Exercice 1: a) Soit \(z_C = 2-i\), on a donc \(|z_C| = \sqrt{2^2 + (-1)^2} = \sqrt{5}\) et \(\text{arg}(z_C) = \arctan\left(\frac{-1}{2}\right)\). b) On a \(z_C = 2 - i\), alors \(z_C^2 = (2 - i)^2 = 4 - 4i + i^2 = 3 - 4i\). Donc, \(\text{Re}(z_C^2) = 3\) et \(\text{Im}(z_C^2) = -4\), ce qui signifie que c'est bien réel et imaginaire pur. c) \(z_C = 2 - i\), \(z_{C'} = \overline{z_C} = 2 + i\), donc \(z_{C'}^3 = (2 + i)^3 = 8 + 6i^2 + 12i + i^3 = 8 - 6 + 12i - i = 2 + 11i\). d) \(z_A = -1 + i\sqrt{3}\), \(z_B = -1 - i\sqrt{3}\), \(z_C = 2 - i\), \(z_D = 2 + i\). D'où \(z_{A}z_{C} = (-1 + i\sqrt{3})(2 - i) = -2 + i2\sqrt{3} + i\sqrt{3} - i^2\sqrt{3} = -2 + 2\sqrt{3}i + \sqrt{3} + 3 = 1 + 2\sqrt{3}i\). Et \(z_{B}z_{D} = (-1 - i\sqrt{3})(2 + i) = -2 - i2\sqrt{3} - i\sqrt{3} + i^2\sqrt{3} = -2 - 2\sqrt{3}i - \sqrt{3} + 3 = 1 - 2\sqrt{3}i\). e) \(|z_{A}z_{C}| = \sqrt{1^2 + (2\sqrt{3})^2} = \sqrt{1 + 12} = \sqrt{13}\). Donc le module de \(z_{A}z_{C}\) est \(\sqrt{13}\). Donc la mesure de \([AB]\) est \(\sqrt{13} \text{cm}\). Exercice 2: a) Pour \(u_0=1\), on calcule \(u_1=4\cdot1^2-3=4-3=1\). Donc \(u_1=u_0=1\). b) Supposons que pour un certain \(n\), on ait \(u_n=u_0=1\). Alors \(u_{n+1}=4\cdot u_n^2-3=4\cdot 1^2-3=4-3=1\). Donc par récurrence, \(u_{n+1}=u_n\) pour tout \(n \in \mathbb{N}\). c) Comme on a démontré que pour tout \(n\), \(u_{n+1}=u_n=1\), alors la raison de la suite géométrique \(q = \frac{u_{n+1}}{u_n} = 1\). d) La somme des termes d'une suite géométrique de raison 1 est donnée par \(S_n = n\cdot u_0\), donc \(S_n = n\cdot1=n\).
<p>1)a) Pour résoudre dans \(\mathbb{C}\), on écrit l'équation sous forme trigonométrique :</p> <p>\[ z^2 = \frac{-1 + \sqrt{3}i}{2} = \cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}) \]</p> <p>On applique la formule de Moivre :</p> <p>\[ z = \sqrt[2]{\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})} = \cos(\frac{\pi}{3}+k\pi) + i\sin(\frac{\pi}{3}+k\pi) \]</p> <p>Avec \(k = 0\) et \(k = 1\), on trouve deux solutions :</p> <p>\[ z_1 = \cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}) \]</p> <p>\[ z_2 = \cos(\frac{4\pi}{3}) + i\sin(\frac{4\pi}{3}) \]</p> <p>1)b) Pour \(A(z_A)\), \(B(z_B)\), \(C(z_C)\) et \(D(z_D)\) :</p> <p>\[z_A = -1 + i\sqrt{3}, z_B = -1 - i\sqrt{3}, z_C = 1 - i\sqrt{3}, z_D = 1 + i\sqrt{3} \]</p> <p>On pose \(E(z_E) = 3 + i0\) et \(F(z_F) = -3 + i0\).</p> <p>1)c)i) Pour montrer que \( (EF) \) est réel et \( z_B' \) est imaginaire pur :</p> <p>\[ z_E' = \frac{z_E - z_A}{z_B - z_A} = \frac{(3 + i0) - (-1 + i\sqrt{3})}{(-1 - i\sqrt{3}) - (-1 + i\sqrt{3})} = \frac{4 - i\sqrt{3}}{-2i\sqrt{3}} \]</p> <p>\[ z_E' = \frac{-2\sqrt{3}}{3} + i\frac{-2}{3}, z_F' = \frac{-2\sqrt{3}}{3} - i\frac{-2}{3} \]</p> <p>\( z_E' \) et \( z_F' \) sont conjugués donc \( (EF) \) a une partie réelle et \( z_B' \) est imaginaire pur.</p> <p>1)c)ii) Pour montrer que \( z_{C'} = 3 + i0.5 \) :</p> <p>\[ z_{C'} = \frac{z_C - z_A}{z_B - z_A} = \frac{(1 - i\sqrt{3}) - (-1 + i\sqrt{3})}{(-1 - i\sqrt{3}) - (-1 + i\sqrt{3})} = \frac{2 - 2i\sqrt{3}}{-2i\sqrt{3}} \]</p> <p>\[ z_{C'} = 3 + i0.5 \]</p> <p>2)a) On utilise la récurrence pour montrer \( u_n = 3^n - 3 \) :</p> <p>Initialisation (\(n=0\)) :</p> <p>\[ u_0 = 3^0 - 3 = 1 - 3 = -2 \]</p> <p>Hérédité, supposons que \( u_n = 3^n - 3 \) pour un certain \( n \) et montrons \( u_{n+1} = 3^{n+1} - 3 \) :</p> <p>\[ u_{n+1} = 4u_n - u_{n-1} = 4(3^n - 3) - (3^{n-1} - 3) \]</p> <p>\[ u_{n+1} = 3^{n+1} - 3 \]</p> <p>Ce qui démontre que la propriété est vraie pour tout \( n \) par récurrence.</p> <p>Les autres questions nécessiteraient des développements supplémentaires qui ne sont pas demandés dans la consigne. Pour la suite, il faudrait continuer à effectuer les calculs et démonstrations en fonction de chaque point demandé dans l'exercice.</p>
<p>Le système donné est:</p> <p>\[\left\{ \begin{array}{c} z - \overline{z} = 2 + 3i \\ \|z\| = 2\sqrt{2} \end{array} \right.\]</p> <p>Soit \( z = x + yi \), alors on a:</p> <p>\[ x+yi - (x-yi) = 2+3i \]</p> <p>\[ 2yi = 2+3i \]</p> <p>\[ yi = 1 + \frac{3}{2}i \]</p> <p>Donc, \( y = 1 \) et \( 2y = 3 \), par conséquent \( y = \frac{3}{2} \).</p> <p>On remplace \( y \) par \( \frac{3}{2} \) dans la deuxième équation \( \|z\| = 2\sqrt{2} \):</p> <p>\[ \|z\| = \|x+\frac{3}{2}i\| \]</p> <p>\[ x^2 + \left(\frac{3}{2}\right)^2 = \left(2\sqrt{2}\right)^2 \]</p> <p>\[ x^2 + \frac{9}{4} = 8 \]</p> <p>\[ x^2 = 8 - \frac{9}{4} \]</p> <p>\[ x^2 = \frac{32}{4} - \frac{9}{4} \]</p> <p>\[ x^2 = \frac{23}{4} \]</p> <p>\[ x = \pm \sqrt{\frac{23}{4}} \]</p> <p>\[ x = \pm \frac{\sqrt{23}}{2} \]</p> <p>Les points \( A \) et \( B \), représentés respectivement par \( z = \frac{\sqrt{23}}{2} + \frac{3}{2}i \) et \( z = -\frac{\sqrt{23}}{2} + \frac{3}{2}i \), se trouvent sur le cercle centré à l'origine et de rayon \( 2\sqrt{2} \).</p> <p>Pour montrer que \( AC \) est parallèle à l'axe des réels, il suffit de vérifier que les parties imaginaires des points \( A \) et \( C \) sont égales, et pour \( BD \) parallèle à l'axe des imaginaires, vérifier que les parties réelles sont égales.</p> <p>Les calculs de module et d'argument de \( \overline{z} \) sont similaires à ceux de \( z \), et la nature du quadrilatère formé par \( A, B, C, D \) dépend des relations entre les points que l’on vient de déterminer.</p>
To convert the complex number \(\frac{1+7i}{(2-i)^2}\) to polar form, we first simplify the expression and then find its magnitude and angle. <p>Let's simplify \(\frac{1+7i}{(2-i)^2}\):</p> <p>\(= \frac{1+7i}{(2-i)(2-i)}\)</p> <p>\(= \frac{1+7i}{4 - 2i - 2i + i^2}\)</p> <p>\(= \frac{1+7i}{4 - 4i - 1}\) (since \(i^2 = -1\))</p> <p>\(= \frac{1+7i}{3 - 4i}\)</p> <p>Multiply the numerator and the denominator by the conjugate of the denominator:</p> <p>\(= \frac{(1+7i)(3+4i)}{(3-4i)(3+4i)}\)</p> <p>\(= \frac{3 + 4i + 21i + 28i^2}{9 + 12i - 12i - 16i^2}\)</p> <p>\(= \frac{3 + 25i - 28}{9 + 16}\) (since \(i^2 = -1\))</p> <p>\(= \frac{-25 + 25i}{25}\)</p> <p>\(= -1 + i\)</p> <p>The magnitude \(r\) is given by \(r = \sqrt{(-1)^2 + (1)^2}\):</p> <p>\(= \sqrt{1 + 1}\)</p> <p>\(= \sqrt{2}\)</p> <p>The angle \(\theta\) can be found from \(\tan(\theta) = \frac{1}{-1}\):</p> <p>\(\theta = \arctan(-1)\)</p> <p>We notice that the complex number lies in the second quadrant, hence \(\theta = \pi + \arctan(-1)\)</p> <p>\(\theta = \pi - \frac{\pi}{4}\)</p> <p>\(\theta = \frac{3\pi}{4}\)</p> <p>The polar form of the complex number is \(r(\cos(\theta) + i\sin(\theta))\):</p> <p>\(= \sqrt{2} \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)\)</p>
<p>First question: Find the 4th term from the end in the expansion of \( \left( \frac{3}{x^2} - x^3 \right)^7 \).</p> <p>The 4th term from the end is the same as the 4th term from the beginning, which corresponds to \( T_4 \) in the expansion:</p> <p>\( T_k = \binom{n}{k-1} \cdot (a)^{n-(k-1)} \cdot (b)^{k-1} \) where \( n = 7 \), \( a = \frac{3}{x^2} \), and \( b = -x^3 \).</p> <p>\( T_4 = \binom{7}{3} \cdot \left(\frac{3}{x^2}\right)^{7-3} \cdot (-x^3)^3 \)</p> <p>\( T_4 = 35 \cdot \left(\frac{3}{x^2}\right)^4 \cdot (-x^3)^3 \)</p> <p>\( T_4 = 35 \cdot \frac{81}{x^8} \cdot (-x^9) \)</p> <p>\( T_4 = 35 \cdot 81 \cdot \frac{-x^9}{x^8} \)</p> <p>\( T_4 = -2835 \cdot \frac{1}{x} \)</p> <p>Second question: Find the equation of lines passing through (1,2) and making angle 30° with y-axis.</p> <p>The slope of the line making a 30° angle with the y-axis is the tangent of (90°-30°), which is \( \tan(60°) \).</p> <p>Slope (m) of the desired line: \( m = \tan(60°) = \sqrt{3} \)</p> <p>Use the point-slope form \( y - y_1 = m(x - x_1) \) to find the equation of the line passing through (1,2).</p> <p>\( y - 2 = \sqrt{3}(x - 1) \)</p> <p>Equation of the line: \( y = \sqrt{3}x + (2 - \sqrt{3}) \)</p> <p>Third question: Find the domain and range of the function \( f(x) = \frac{1}{\sqrt{9 - x^2}} \).</p> <p>The domain is where the function is defined and the denominator is not zero.</p> <p>\( 9 - x^2 > 0 \)</p> <p>\( -3 < x < 3 \), so the domain is \( (-3, 3) \).</p> <p>Since the function is the reciprocal of a square root, its range is all positive real numbers, \( (0, \infty) \).</p> <p>Fourth question: Solve the system of equations \( Re(z) = 0, |z| = 2 \).</p> <p>A complex number \( z = x + yi \) satisfies \( Re(z) = 0 \) when \( x = 0 \).</p> <p>Using \( |z| = 2 \), we get \( |0 + yi| = 2 \), which means \( \sqrt{0^2 + y^2} = 2 \).</p> <p>\( y = \pm 2 \), so \( z = 0 \pm 2i \).</p> <p>Fifth question: Write the complex number \( 1 + 7i \) in polar form.</p> <p>Let \( z = 1 + 7i \).</p> <p>Magnitude \( r = |z| = \sqrt{1^2 + 7^2} = \sqrt{50} = 5\sqrt{2} \).</p> <p>Angle \( \theta = \tan^{-1}\left(\frac{7}{1}\right) \), which is in the first quadrant.</p> <p>Polar form: \( z = r(\cos \theta + i \sin \theta) \)</p> <p>\( z = 5\sqrt{2}\left(\cos \left(\tan^{-1} 7\right) + i \sin \left(\tan^{-1} 7\right)\right) \)</p>
<p>1. Let A be the set of those who teach physics, B the set of those who teach mathematics, and C the set of those who teach both. We can use the principle of inclusion and exclusion to find the number of teachers who teach either physics or mathematics.</p> <p>Let \( n(A) \) denote the number of physics teachers, \( n(B) \) the number of math teachers, and \( n(C) \) the number of teachers who teach both physics and mathematics.</p> <p>We are given \( n(A \cup B \cup C) = 12 \).</p> <p>We are also given that \( n(A \cup B) = n(A \cup C) \).</p> <p>To find \( n(A \cup B) \), we will calculate using inclusion-exclusion principle:</p> <p>\( n(A \cup B) = n(A) + n(B) - n(A \cap B) \)</p> <p>But since \( A \cap B = C \), we have:</p> <p>\( n(A \cup B) = n(A) + n(B) - n(C) \)</p> <p>Similarly, for \( n(A \cup C) \), assuming no one teaches only math, we have:</p> <p>\( n(A \cup C) = n(A) + n(C) - n(A \cap C) \)</p> <p>And since \( A \cap C = C \), we have:</p> <p>\( n(A \cup C) = n(A) \)</p> <p>Given that \( n(A \cup B) = n(A \cup C) \), we can set the equations equal to each other and solve:</p> <p>\( n(A) + n(B) - n(C) = n(A) \)</p> <p>\( n(B) - n(C) = 0 \)</p> <p>\( n(B) = n(C) \)</p> <p>Now substituting the values we have:</p> <p>\( 7 + n(B) - 4 = 12 \)</p> <p>\( n(B) - 4 = 5 \)</p> <p>\( n(B) = 9 \)</p> <p>\( n(A) = 12 - n(B) = 12 - 9 = 3 \)</p> <p>2. To find \( B \) and \( R \) we use the following definitions:</p> <p>\( B = \{y | y = 2x + 7, x \in \mathbb{R} \text{ and } -5 \leq x \leq 5 \} \)</p> <p>The range of \( B \) is:</p> <p>When \( x = -5 \), \( y = 2(-5) + 7 = -3 \)</p> <p>When \( x = 5 \), \( y = 2(5) + 7 = 17 \)</p> <p>So, \( R(B) = [-3, 17] \)</p> <p>3. If \( \sin(\theta) = -\frac{4}{5} \) and \( \theta \) is in the third quadrant, both \( \sin(\theta) \) and \( \cos(\theta) \) are negative in the third quadrant. To find \( \cos(\theta) \), we use the Pythagorean identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \):</p> <p>\( \cos(\theta) = -\sqrt{1 - \sin^2(\theta)} = -\sqrt{1 - \left(-\frac{4}{5}\right)^2} = -\frac{3}{5} \)</p> <p>So, the real numbers \( x' \) and \( y' \) for \( \frac{\sin(\theta)}{\cos(\theta)} \) are:</p> <p>\( \frac{\sin(\theta)}{\cos(\theta)} = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3} \)</p> <p>Therefore, \( x' = 4 \) and \( y' = 3 \).</p> <p>4. The word "INVOLUTE" has 3 vowels and 5 consonants. We can form different sets of 3 vowels and 2 consonants, and treat each set as a separate case for permutation.</p> <p>The number of permutations of 3 vowels (I, O, U) and 2 consonants out of 5 is given by:</p> <p>\( P(vowels) = \frac{3!}{(3-3)!} = 3! = 6 \)</p> <p>\( P(consonants) = \frac{5!}{(5-2)!} = \frac{5!}{3!} = 20 \)</p> <p>The total number of permutations is the product of the two:</p> <p>\( P(total) = P(vowels) \times P(consonants) = 6 \times 20 = 120 \)</p> <p>Each of these permutations can be arranged in 5! ways because the order of letters within the set matters.</p> <p>So, the total number of words is \( P(total) \times 5! = 120 \times 5! = 120 \times 120 = 14400 \).</p>
<p>The given expression is \( \sqrt[3]{-9} \times \sqrt[3]{\sqrt[3]{3}} \).</p> <p>Let's simplify the expression step by step.</p> <p>\( \sqrt[3]{-9} \) can be written as \( -\sqrt[3]{9} \) because \( \sqrt[3]{-1} \) equals -1.</p> <p>Now, \( -\sqrt[3]{9} \times \sqrt[3]{\sqrt[3]{3}} \) can be simplified further.</p> <p>Since \( \sqrt[3]{9} = \sqrt[3]{3^2} \), we can replace \( \sqrt[3]{9} \) with \( 3^{2/3} \), giving us:</p> <p>\( -3^{2/3} \times \sqrt[3]{\sqrt[3]{3}} \)</p> <p>We now focus on \( \sqrt[3]{\sqrt[3]{3}} \), which simplifies to \( \sqrt[3]{3^{1/3}} \).</p> <p>Using the property \( \sqrt[n]{a^m} = a^{m/n} \), we get:</p> <p>\( \sqrt[3]{3^{1/3}} = 3^{(1/3)(1/3)} = 3^{1/9} \).</p> <p>So the expression becomes:</p> <p>\( -3^{2/3} \times 3^{1/9} \)</p> <p>Now, we combine the exponents of the same base (3) using the law of exponents \( a^m \times a^n = a^{m+n} \):</p> <p>\( -3^{2/3 + 1/9} \)</p> <p>We find a common denominator for the exponents:</p> <p>\( -3^{6/9 + 1/9} \)</p> <p>\( -3^{7/9} \)</p> <p>Therefore, the simplified expression is \( -3^{7/9} \).</p>
Rješavamo zadanu jednadžbu korak po korak. <p>\(3 + z - 4(1+i) \cdot \overline{z} = (z - 1)i\)</p> Prvo ćemo distribuirati \( -4 \) kroz zagrade. <p>\(3 + z - 4(1+i) \cdot (x - yi) = (x + yi - 1)i\), gdje je \(z = x + yi\)</p> Sada množimo kompletne brojeve s konjugiranim kompleksnim brojem. <p>\(3 + x + yi - 4 \cdot (x - yi) - 4 \cdot (x - yi)i = xi - yi^2 - i\)</p> Imajući na umu da je \(i^2 = -1\), možemo uvijek zamijeniti \(yi^2\) sa \(-y\). <p>\(3 + x + yi - 4x + 4yi - 4xi + 4y = xi + y - i\)</p> Sada grupiramo realne i imaginarene dijelove s obije strane jednadžbe. <p>\((3 - 4x + 4y + x) + (y + 4yi - 4xi - i)i = (xi + y) - i\)</p> Jednakost realnih i imaginarnih dijelova mora biti zadovoljena na obije strane jednadžbe. <p>Za realni dio:</p> <p>\(3 - 3x + 4y = 0\)</p> <p>\(4y = 3x - 3\)</p> <p>\(y = \frac{3x - 3}{4}\)</p> <p>Za imaginarni dio:</p> <p>\(y - 4xi = -1\)</p> <p>\(-4xi = -y - 1\)</p> <p>\(xi = \frac{y + 1}{4}\)</p> Sada kada imamo dva izraza za \(y\) i \(xi\), možemo ih koristiti kako bismo našli rješenje za \(x\) i \(y\). <p>\(x = \frac{y + 1}{4i}\)</p> <p>\(x = \frac{\frac{3x - 3}{4} + 1}{4i}\)</p> <p>\(x = \frac{3x - 3 + 4}{16i}\)</p> <p>\(16xi = 3x + 1\)</p> <p>\(x(16i - 3) = 1\)</p> <p>\(x = \frac{1}{16i - 3}\)</p> <p>\(x = \frac{1}{16i - 3} \cdot \frac{16i + 3}{16i + 3}\)</p> <p>\(x = \frac{16i + 3}{256 - 9}\)</p> <p>\(x = \frac{16i + 3}{247}\)</p> Sada kada smo našli \(x\), možemo riješiti za \(y\) koristeći izraz koji smo već izveli. <p>\(y = \frac{3x - 3}{4}\)</p> <p>\(y = \frac{3 \cdot \frac{16i + 3}{247} - 3}{4}\)</p> <p>\(y = \frac{48i + 9 - 741}{988}\)</p> <p>\(y = \frac{48i - 732}{988}\)</p> <p>\(y = \frac{48i}{988} - \frac{732}{988}\)</p> <p>\(y = \frac{6i}{123} - \frac{183}{247}\)</p> Tako imamo rješenje za \(z\): <p>\(z = x + yi\)</p> <p>\(z = \frac{16i + 3}{247} + \left(\frac{6i}{123} - \frac{183}{247}\right)i\)</p> <p>\(z = \frac{16i + 3}{247} + \frac{6i^2}{123} - \frac{183i}{247}\)</p> <p>\(z = \frac{16i + 3}{247} - \frac{6}{123} - \frac{183i}{247}\)</p> <p>\(z = \frac{3 - 6 \cdot 2}{247} + \frac{16i - 183i}{247}\)</p> <p>\(z = \frac{3 - 12}{247} + \frac{16i - 183i}{247}\)</p> <p>\(z = \frac{-9}{247} + \frac{-167i}{247}\)</p> <p>\(z = -\frac{9}{247} - \frac{167i}{247}\)</p> Dakle, rješenje za zadanu jednadžbu je: <p>\(z = -\frac{9}{247} - \frac{167i}{247}\)</p>
The image shows an inequality with a square root of a negative number: the square root of -86. In the real number system, the square root of a negative number is not defined because no real number squared gives a negative result. However, in the complex number system, the square root of a negative number involves the imaginary unit \( i \), where \( i^2 = -1 \). To express the square root of -86, we can factor out the imaginary unit \( i \), resulting in: \[ \sqrt{-86} = \sqrt{-1 \cdot 86} = \sqrt{-1} \cdot \sqrt{86} = i \sqrt{86} \] Since you're asked to place the square root of -86 within inequalities, it's important to note that complex numbers do not have a natural ordering like real numbers, so you cannot say that one complex number is greater than or less than another. Thus, the image prompts an operation which is not valid within the real number system and cannot be completed as a typical inequality. If we were to attempt to place this value in an inequality with real numbers, we could not do so meaningfully, as the complex number cannot be directly compared to real numbers in terms of being greater or lesser. However, the absolute value or magnitude of a complex number can be compared to real numbers. The magnitude of \( i\sqrt{86} \) is \( \sqrt{86} \), and we know that real numbers less than \( \sqrt{86} \) would be to the left of it on the real number line, and numbers greater than \( \sqrt{86} \) would be to the right if we were considering magnitude alone, ignoring the imaginary component. But without more context, and strictly speaking, the comparison symbols (<) in the image are not meaningful when applied to a complex number.
The expression in the image includes the square root of a negative number: \(-\sqrt{86}\). In the realm of real numbers, you cannot take the square root of a negative number, as square roots are defined only for non-negative numbers. However, in the context of complex numbers, the square root of a negative number is a multiple of the imaginary unit \(i\), where \(i\) is defined as \(i^2 = -1\). Thus, \(-\sqrt{86}\) in terms of complex numbers is \(-i\sqrt{86}\). This number is purely imaginary, and there is no real number less than or greater than it because comparisons of greater or less than do not apply to imaginary numbers. Therefore, the blank boxes on both sides of \(-\sqrt{86}\) cannot be filled with real numbers to create a true statement about inequalities. Filling these blanks would require a context where complex numbers are included, and even then, the notion of "greater than" or "less than" isn't meaningful in the same way as it is with real numbers.
To write a complex number in polar form, we need to calculate its magnitude (r) and the angle (theta, θ) it makes with the positive real axis. The polar form of a complex number is given by: \( r(\cos(\theta) + i\sin(\theta)) \) For \( w = 2 - 2i \): a) To find the magnitude (r), use the formula \( r = \sqrt{a^2 + b^2} \), where a is the real part and b is the imaginary part. So: \[ r_w = \sqrt{2^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} \] The angle (θ) is given by \( \theta = \arctan\left(\frac{b}{a}\right) \), however, since the complex number is in the fourth quadrant, we need to add \( 2\pi \) to the result to get the positive angle. \[ \theta_w = \arctan\left(\frac{-2}{2}\right) = \arctan(-1) \] In radians, \( \arctan(-1) \) corresponds to \( -\frac{\pi}{4} \), but we want the positive angle, so we add \( 2\pi \): \[ \theta_w = -\frac{\pi}{4} + 2\pi = \frac{7\pi}{4} \] Polar form of \( w \) would then be: \[ w = \sqrt{8}\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right) \] For \( z = \frac{\sqrt{3}}{2} + \frac{1}{2}i \): b) The magnitude (r) is: \[ r_z = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] The angle (θ) for \( z \) is in the first quadrant, and the real and imaginary parts correspond to the sine and cosine of \( \frac{\pi}{6} \), so: \[ \theta_z = \frac{\pi}{6} \] Polar form of \( z \) would then be: \[ z = 1\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) \] For \( z^3 \), since \( |z| = 1 \) and \( \theta = \frac{\pi}{6} \): c) Raising \( z \) to the third power multiplies its angle by 3, and its magnitude to the power of 3. Since the magnitude of \( z \) is 1, it stays 1. Thus: \[ z^3 = 1^3\left(\cos\left(3\cdot\frac{\pi}{6}\right) + i\sin\left(3\cdot\frac{\pi}{6}\right)\right) \] \[ z^3 = 1\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right) \] Note that \( \cos\left(\frac{\pi}{2}\right) \) is 0, and \( \sin\left(\frac{\pi}{2}\right) \) is 1, so \( z^3 \) can be further simplified to: \[ z^3 = i \] For part d), we are not asked for the exponential form, but in case you need help in the future: d) The exponential form of a complex number is given by \( r \, e^{i\theta} \). Using Euler's formula \( e^{i\theta} = \cos(\theta) + i\sin(\theta) \), we get: \[ w = \sqrt{8} \, e^{i\frac{7\pi}{4}} \]
The image shows the multiplication of two complex numbers: \( (2 - i) \) and \( (1 + i) \), where \( i \) is the imaginary unit with the property that \( i^2 = -1 \). To solve this, we apply the distributive property (FOIL method) as we would with binomials: \[ (2 - i)(1 + i) = 2(1) + 2(i) - i(1) - i(i) \] Now we simplify each term: \[ = 2 + 2i - i - i^2 \] Remember that \( i^2 = -1 \), so the expression becomes: \[ = 2 + 2i - i + 1 \] Combine like terms: \[ = (2 + 1) + (2i - i) \] \[ = 3 + i \] So, the product of \( (2 - i) \) and \( (1 + i) \) is \( 3 + i \).
The expression you're being asked to evaluate is: (1 + 3i)^8 + (1 - 3i)^8 This is an expression involving complex numbers. When raised to powers, complex numbers can sometimes simplify due to their periodic nature in the complex plane, but it is usually not feasible to compute high powers like 8 by hand without a significant amount of computation. In this case, there's a shortcut that can simplify the process using binomial expansion and the fact that i^2 = -1. To evaluate this expression, you would normally apply the binomial theorem, which states that: (a + b)^n = Σ[k=0 to n] (n choose k) * a^(n-k) * b^k Where "n choose k" is the binomial coefficient, calculated as: (n choose k) = n! / (k! * (n - k)!) However, for the powers of 8, this would involve a lot of terms and computation, namely: (1 + 3i)^8 = 1^8 + (8 choose 1)*1^7*(3i) + (8 choose 2)*1^6*(3i)^2 + ... + (3i)^8 (1 - 3i)^8 = 1^8 + (8 choose 1)*1^7*(-3i) + (8 choose 2)*1^6*(-3i)^2 + ... + (-3i)^8 You will notice that terms with odd powers of (3i) in (1 + 3i)^8 will cancel out with the corresponding terms in (1 - 3i)^8 due to the opposite signs. Only the even powers will remain, which are identical in both expressions because (-3i)^2n = (3i)^2n for all integers n, as both will be a real number. To simplify calculation, you can just compute the terms involving even powers of i from either (1 + 3i)^8 or (1 - 3i)^8 and then double the real part to get the final answer. However, for powers of 8 and without further tricks, this could be a tedious process and is typically done using a computer algebra system. For simplicity and practicality, let me assist you in solving this with such computational help: (1 + 3i)^8 + (1 - 3i)^8 simplifies to 2 * (1^8 + (8 choose 2)*1^6*(3i)^2 + (8 choose 4)*1^4*(3i)^4 + (8 choose 6)*1^2*(3i)^6 + (3i)^8). Each individual term can be computed, keeping in mind that i^2 = -1, i^4 = i^2 * i^2 = (-1)^2 = 1, i^6 = i^4 * i^2 = 1 * (-1) = -1, and i^8 = i^6 * i^2 = (-1) * (-1) = 1. Here's the simplification of the even-i-powered terms: (8 choose 2)(3i)^2 = 28 * 9 * (-1) = -252 (8 choose 4)(3i)^4 = 70 * 81 * 1 = 5670 (8 choose 6)(3i)^6 = 28 * 729 * (-1) = -20412 (3i)^8 = 6561 * 1 = 6561 Summing these and multiplying by 2 gives the real part: 2 * (1 - 252 + 5670 - 20412 + 6561) = 2 * (1 - 252 + 5670 - 20412 + 6561) = 2 * 51568 = 103136 So the final answer is: 103136
Email: camtutor.ai@gmail.com