<p>To calculate the acceleration of the mass, we will use Newton's second law of motion which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration (F = ma).</p> <p>Given that F1 is increased to 20 N and the acceleration 'a' is to be calculated, we can rearrange the formula to find acceleration:</p> <p>a = \frac{F}{m}</p> <p>However, the mass 'm' is not provided in the question. The solution cannot be determined without knowing the mass of the object. Assuming the mass was given as 'm', the acceleration 'a' of the mass would be:</p> <p>a = \frac{20\ N}{m}</p> <p>Without the specific value of 'm', we cannot calculate the numerical value of the acceleration 'a', but this is the formula that would be used if the mass were known.</p>
<p>To find the acceleration of the astronaut and satellite, we can use Newton's second law, \( F = ma \), where \( F \) is the force applied, \( m \) is the mass, and \( a \) is the acceleration.</p> <p>For the astronaut:</p> <p>\[ a_{astronaut} = \frac{F}{m_{astronaut}} = \frac{30\,N}{60\,kg} \]</p> <p>\[ a_{astronaut} = 0.5\,ms^{-2} \]</p> <p>For the satellite:</p> <p>\[ a_{satellite} = \frac{F}{m_{satellite}} = \frac{30\,N}{300\,kg} \]</p> <p>\[ a_{satellite} = 0.1\,ms^{-2} \]</p> <p>Both the astronaut and the satellite will experience these accelerations in opposite directions due to Newton's third law of equal and opposite reaction.</p>
<p>To calculate the force (\(F\)) when a mass (\(m\)) is accelerated (\(a\)), use Newton's second law of motion, \(F = ma\).</p> <p>Given:</p> <p>\(m = 5\ \text{kg}\)</p> <p>\(a = 3\ \text{m/s}^2\)</p> <p>So,</p> <p>\(F = m \cdot a = 5 \ \text{kg} \cdot 3 \ \text{m/s}^2 = 15 \ \text{N}\)</p> <p>Therefore, the force is \(15 \ \text{Newtons} (N)\).</p>
Given: Mass \(m = 5 \text{ kg}\), Acceleration \(a = 3 \text{ m/s}^2\). Force \(F\) can be calculated using Newton's second law: \(F = m \cdot a\). \(F = 5 \text{ kg} \cdot 3 \text{ m/s}^2\), \(F = 15 \text{ N}\). Thus, the force is \(15 \text{ N}\).
The net force on the block is the difference between the applied force and the frictional force. Net force = Applied force - Frictional force Net force = 25 N - 15 N Net force = 10 N To find the acceleration (a), use Newton's second law, \( F = ma \), where F is the net force and m is the mass. Solving for acceleration \( a \), \( a = \frac{F}{m} \) Substitute the known values into the equation, \( a = \frac{10 \, \text{N}}{5 \, \text{kg}} \) The acceleration of the block is \( 2 \, \text{m/s}^2 \).
Given: \( m = 5 \, \text{kg} \) \( a = 3 \, \text{m/s}^2 \) The force \( F \) can be calculated using Newton's second law: \( F = m \times a \) Substitute the given values: \( F = 5 \, \text{kg} \times 3 \, \text{m/s}^2 \) Calculate the force: \( F = 15 \, \text{N} \)
F = m \cdot a \\ F = 5 \text{ kg} \cdot 3 \text{ m/s}^2 \\ F = 15 \text{ N}
// No solution steps required as the image contains only the formula for Newton's Second Law, which is \( F = ma \).
Para resolver el problema, necesitamos usar la segunda ley de movimiento de Newton, que establece que la fuerza neta aplicada a un objeto es igual a la masa del objeto multiplicada por su aceleración (F = m*a). Aquí están los datos que tenemos: - Masa del coche (m): 1200 kg - Fuerza aplicada (F_aplicada): 200 N - Fuerza de rozamiento (F_rozamiento): 90 N - Tiempo (t): 30 s - Velocidad inicial (v_i): 0 m/s (ya que el coche parte del reposo) La fuerza neta (F_neta) es la diferencia entre la fuerza aplicada y la fuerza de rozamiento: F_neta = F_aplicada - F_rozamiento = 200 N - 90 N = 110 N Usamos la segunda ley de Newton para encontrar la aceleración (a): F = m*a 110 N = 1200 kg * a a = 110 N / 1200 kg a = 0.0917 m/s^2 Con la aceleración, podemos encontrar la velocidad final (v_f) usando la fórmula de la cinemática para velocidad final con aceleración constante y velocidad inicial cero: v_f = v_i + a*t v_f = 0 m/s + 0.0917 m/s^2 * 30 s v_f = 2.751 m/s Por lo tanto, la velocidad que adquirirá el coche al cabo de los 30 segundos es 2.751 metros por segundo.
Para resolver el problema proporcionado en la imagen, primero vamos a interpretar la información que se nos da: Tenemos un cuerpo de masa \( m = 10 \) kg inicialmente en reposo, y se le aplica una fuerza constante de \( F = 25 \) N durante un intervalo de tiempo \( t = 5 \) s. a) Para encontrar la aceleración \( a \) que adquiere el cuerpo, usamos la segunda ley de Newton, que establece que la fuerza aplicada sobre un objeto es igual al producto de la masa del objeto por su aceleración (\( F = ma \)). Despejamos la aceleración: \[ a = \frac{F}{m} \] Sustituimos los valores dados: \[ a = \frac{25 \text{ N}}{10 \text{ kg}} \] \[ a = 2.5 \text{ m/s}^2 \] Por lo tanto, la aceleración que adquiere el cuerpo es de \( 2.5 \text{ m/s}^2 \). b) Para hallar la velocidad \( v \) que poseerá el cuerpo al cabo de los 5 segundos, utilizamos la definición de aceleración, que es el cambio de velocidad sobre el cambio de tiempo (\( a = \Delta v / \Delta t \)). Como el objeto parte del reposo, su velocidad inicial es \( v_0 = 0 \) m/s, y la aceleración es constante, entonces podemos usar la fórmula: \[ v = v_0 + a \cdot t \] Sustituimos \( v_0 \) con 0 y los valores correspondientes: \[ v = 0 + 2.5 \text{ m/s}^2 \cdot 5\text{ s} \] \[ v = 12.5 \text{ m/s} \] Por lo tanto, la velocidad que poseerá el cuerpo a los 5 segundos será de \( 12.5 \text{ m/s} \).
The image you've provided includes a question which states: "Solve the following word problem. 1. If a 4 kg object experiences a net force of 12 N, what will be the object's acceleration?" To solve this problem, we'll use Newton's Second Law of Motion, which is defined as: F = ma where F is the net force applied to the object, m is the mass of the object, and a is the acceleration of the object. We are given: F (net force) = 12 N m (mass) = 4 kg We need to find the acceleration (a). Firstly, we rearrange the equation to solve for acceleration: \( a = \frac{F}{m} \) Now we can substitute in the values we have: \( a = \frac{12 \text{ N}}{4 \text{ kg}} \) Now doing the calculation: \( a = 3 \text{ m/s}^2 \) The object's acceleration would be 3 meters per second squared.
The equation that links force and acceleration is Newton's second law of motion, which states F = ma, where F is force, m is mass, and a is acceleration. In the International System of Units (SI), force is measured in newtons (N), mass in kilograms (kg), and acceleration in meters per second squared (m/s^2). Therefore, 1 newton (1 N) can be expressed as the force required to accelerate a 1-kilogram mass at a rate of 1 meter per second squared (1 m/s^2). In other words, 1 N = 1 kg·m/s^2.
Email: camtutor.ai@gmail.com