\[ \begin{align*} \frac{a^3 \cdot b^x \cdot c^4}{a^{1/2} \cdot b^{5/2} \cdot c^5} &= a^2 \cdot c^{-1} \\ a^{3 - \frac{1}{2}} \cdot b^{x - \frac{5}{2}} \cdot c^{4 - 5} &= a^2 \cdot c^{-1} \\ a^{\frac{5}{2}} \cdot b^{x - \frac{5}{2}} \cdot c^{-1} &= a^2 \cdot c^{-1} \\ \end{align*} \] Kita dapat memisahkan persamaan berdasarkan basis variabel a, b, dan c untuk membuatnya lebih mudah diselesaikan. \[ \begin{align*} a^{\frac{5}{2}} &= a^2 \\ b^{x - \frac{5}{2}} &= 1 \\ c^{-1} &= c^{-1} \\ \end{align*} \] Dari persamaan tersebut dapat disimpulkan bahwa: \[ \begin{align*} \frac{5}{2} &= 2 \quad \text{(Ini benar, tidak perlu dipecahkan lebih lanjut)} \\ x - \frac{5}{2} &= 0 \quad \text{(Ini yang akan kita selesaikan)} \\ \end{align*} \] \[ \begin{align*} x - \frac{5}{2} &= 0 \\ x &= \frac{5}{2} \\ \end{align*} \]
<p>Langkah pertama, kita akan menggunakan aturan pangkat saat mengalikan bilangan dengan basis yang sama:</p> <p>Jika \(a^m \times a^n = a^{m+n}\), maka:</p> <p>\(2^2 \times 2^3 = 2^{2+3}\)</p> <p>Langkah kedua, kita menjumlahkan eksponennya:</p> <p>\(2^{2+3} = 2^5\)</p> <p>Langkah ketiga, kita menghitung nilai \(2^5\):</p> <p>\(2^5 = 32\)</p>
<p>Para simplificar la expresión \( x^7 x^{-n} \), se aplican las reglas de los exponentes, las cuales indican que al multiplicar dos expresiones con la misma base, los exponentes se suman.</p> <p>\( x^7 \cdot x^{-n} = x^{7 + (-n)} = x^{7-n} \)</p> <p>Por lo tanto, la expresión simplificada es \( x^{7-n} \).</p>
<p>Данное выражение: \( 4^{log_3{2}} \)</p> <p>По определению логарифма \( a^{log_a{b}} = b \), поэтому:</p> <p>\( 4^{log_3{2}} = 2^{log_3{4}} \)</p> <p>Используем свойство логарифмов \( log_a{b^n} = n \cdot log_a{b} \) и выразим \( log_3{4} \) как \( 2 \cdot log_3{2} \):</p> <p>\( 2^{log_3{4}} = 2^{2 \cdot log_3{2}} \)</p> <p>Тогда используем свойство экспонент: \( a^{m \cdot n} = (a^m)^n \):</p> <p>\( 2^{2 \cdot log_3{2}} = (2^{log_3{2}})^2 \)</p> <p>По определению логарифма возводим обратно:</p> <p>\( (3^{log_3{2}})^2 = 2^2 \)</p> <p>Таким образом, итоговый ответ:</p> <p>\( 2^2 = 4 \)</p>
\[ \left( \frac{4a^6b^5c^{-2}}{(2a^{-4}b^6c)^3} \right)^2 = \left( \frac{4a^6b^5c^{-2}}{8a^{-12}b^{18}c^3} \right)^2 = \left( \frac{4 \cdot a^{6-(-12)} \cdot b^{5-18} \cdot c^{-2-3}}{8} \right)^2 = \left( \frac{4 \cdot a^{18} \cdot b^{-13} \cdot c^{-5}}{8} \right)^2 = \left( \frac{a^{18} \cdot b^{-13} \cdot c^{-5}}{2} \right)^2 = \frac{a^{36} \cdot b^{-26} \cdot c^{-10}}{4} \]
Given the expression \(\frac{4a^6b^5c^{-2}}{(2a^{-4}b^6c)^3}\), simplify as follows: \[ \left(\frac{4a^6b^5c^{-2}}{(2a^{-4}b^6c)^3}\right) = \frac{4a^6b^5c^{-2}}{8a^{-12}b^{18}c^3} \] Apply the exponent rule \(a^m \cdot a^n = a^{m+n}\) and simplify: \[ = 4a^{6 - (-12)}b^{5 - 18}c^{-2 - 3} \] \[ = 4a^{18}b^{-13}c^{-5} \] \[ = \frac{4a^{18}}{b^{13}c^{5}} \] Thus, the final simplified form is \(\frac{4a^{18}}{b^{13}c^{5}}\).
The image is rotated and not fully clear, but I will provide the steps for the equation that is visible: The problem looks like it involves simplifying the expression 2·3^(1/5) / (6^(2/5)·(3^(1/5))²) Step 1: Compute the exponent for 3^(1/5) when squared, which is (1/5) * 2 = 2/5. Step 2: Simplify the expression as such: 2·3^(1/5) / (6^(2/5)·3^(2/5)) Since 6 = 2·3, we can rewrite 6^(2/5) as (2·3)^(2/5), which is equivalent to 2^(2/5)·3^(2/5). 3: The expression is now: 2·3^(1/5) / (2^(2/5)·3^(2/5)) 4: We can now cancel out common terms: (2·3^(1/5)) / (2^(2/5)·3^(2/5)) = 3^(1/5) / 2^(2/5) 5: The solution will be the simplified form of 3^(1/5) / 2^(2/5). If you can provide a clearer image or clarify the exact expression, I can offer more precise help.
Para resolver esta expresión con exponente negativo, debes recordar que una base elevada a un exponente negativo es equivalente a la inversa de la base elevada al exponente positivo. El 3/5 es la base y -2 es el exponente. Entonces, puedes reescribir la expresión tomando el recíproco de 3/5 y cambiando el signo del exponente a positivo: \[ \left(\frac{3}{5}\right)^{-2} = \left(\frac{5}{3}\right)^{2} \] Ahora elevamos al cuadrado el nuevo fraccionario 5/3, lo cual significa que multiplicamos 5/3 por sí mismo: \[ \left(\frac{5}{3}\right)^{2} = \frac{5}{3} \cdot \frac{5}{3} = \frac{5 \cdot 5}{3 \cdot 3} = \frac{25}{9} \] Por lo tanto, la solución final de la expresión es \( \frac{25}{9} \).
The expression given in the image is: \((x^2y^5 ÷ y^0)^2\) Firstly, let's simplify the expression inside the parentheses. Any nonzero number raised to the power of 0 is 1, which means \(y^0 = 1\). Therefore, our expression becomes: \((x^2y^5 ÷ 1)^2\) Since dividing by 1 does not change the value of the expression, we have: \((x^2y^5)^2\) Next, when you raise a power to another power, you multiply the exponents. Here's how to break it down: \((x^2)^2 * (y^5)^2\) Now calculate each term: \(x^2\) raised to the 2nd power is \(x^{2*2}\) which is \(x^4\), and \(y^5\) raised to the 2nd power is \(y^{5*2}\) which is \(y^{10}\). So after combining them, you get: \(x^4y^{10}\) This is the simplified form of the original expression.
The expression given in the image is: \[ \left( \frac{8y^4z^8}{16y^8z} \right)^4 \] To simplify this expression, first, simplify the fraction by canceling common factors and then apply the exponent of 4: \[ \left( \frac{8}{16} \cdot \frac{y^4}{y^8} \cdot \frac{z^8}{z} \right)^4 \] Simplify the fractions: \[ \left( \frac{1}{2} \cdot y^{4-8} \cdot z^{8-1} \right)^4 \] which simplifies further to: \[ \left( \frac{1}{2} \cdot y^{-4} \cdot z^7 \right)^4 \] Now apply the exponent of 4 to each term within the parentheses: \[ \left( \frac{1}{2} \right)^4 \cdot y^{-4 \cdot 4} \cdot z^{7 \cdot 4} \] This gives: \[ \frac{1}{16} \cdot y^{-16} \cdot z^{28} \] Since y has a negative exponent, it can be moved to the denominator: \[ \frac{z^{28}}{16y^{16}} \] This is the simplified form of the original expression.
This is an algebraic expression simplification problem involving exponent rules. We'll simplify each term by factoring out the common powers of 5 from the numerator and the denominator. Given expression: \( \frac{10 \times 5^{n+4} + 125 \times 5^{n+2}}{3 \times 5^{n+3} - 20 \times 5^{n+1}} \) Step 1: Factor out common powers of 5 from each term. Numerator: - Factor out \( 5^{n+2} \) from each term. \( 5^{n+2} (10 \times 5^2 + 125) = 5^{n+2} (10 \times 25 + 125) = 5^{n+2} (250 + 125) = 5^{n+2} \times 375 \) Denominator: - Factor out \( 5^{n+1} \) from each term. \( 5^{n+1} (3 \times 5^2 - 20) = 5^{n+1} (3 \times 25 - 20) = 5^{n+1} (75 - 20) = 5^{n+1} \times 55 \) Step 2: Simplify the expression with the factored out powers of 5. The simplified expression is: \( \frac{5^{n+2} \times 375}{5^{n+1} \times 55} \) Step 3: Cancel out the common power of 5 from the numerator and denominator. \( 5^{n+2} \) in the numerator and \( 5^{n+1} \) in the denominator have a common base, which means we can subtract the exponents. \( 5^{n+2 - (n+1)} = 5^1 = 5 \) So, the simplification yields: \( \frac{5 \times 375}{55} \) Step 4: Simplify the coefficients (375/55). Divide 375 by 55 to get: \( \frac{375}{55} = \frac{75}{11} \) So the final simplified expression is: \( \frac{5 \times 75}{11} \) Step 5: Multiply the 5 by 75. \( 5 \times 75 = 375 \) Therefore, the final simplified form of the expression is: \( \frac{375}{11} \) This fraction cannot be simplified further, as 375 and 11 do not have any common factors other than 1.
Email: camtutor.ai@gmail.com