Let the original height of the cone be \( h \) and the radius be \( r \).
When the cone is half-filled with water, the volume \( V \) of the water is \( \frac{1}{3}\pi\left(\frac{r}{2}\right)^2\left(\frac{h}{2}\right) \) because the height of the water is \( \frac{h}{2} \).
When the cone is inverted, let \( x \) be the height of the water level in terms of \( h \), and \( r' \) be the new radius of the water level.
By similar triangles, \( \frac{r'}{x} = \frac{r}{h} \rightarrow r' = \frac{rx}{h} \).
The volume of the water remains constant, so \( V = \frac{1}{3}\pi r'^2 x = \frac{1}{3}\pi \left(\frac{rx}{h}\right)^2 x \).
Equating the two expressions for \( V \), we get \( \frac{1}{3}\pi\left(\frac{r}{2}\right)^2\left(\frac{h}{2}\right) = \frac{1}{3}\pi \left(\frac{rx}{h}\right)^2 x \).
Simplify to find \( x \):
\( \left(\frac{r}{2}\right)^2\left(\frac{h}{2}\right) = \left(\frac{rx}{h}\right)^2 x \).
\( \frac{r^2 h}{4} = \frac{r^2 x^3}{h^2} \).
Multiply both sides by \( h^2 \):
\( h^3 = 4x^3 \).
Take the cube root of both sides to solve for \( x \):
\( x = \frac{h}{\sqrt[3]{4}} \).
Therefore, the height of the water level \( x \) in terms of the original height \( h \) when the cone is inverted is \( x = \frac{h}{\sqrt[3]{4}} \).
Email: camtutor.ai@gmail.com