Example Question - properties of exponents

Here are examples of questions we've helped users solve.

Properties of Exponents

Claro, te ayudaré a resolver la igualdad dada en la imagen utilizando las propiedades de los exponentes. La igualdad de la imagen es una propiedad de los exponentes que nos dice lo siguiente: La potencia de un producto es igual al producto de las potencias de los factores, es decir: \[(a \cdot b)^n = a^n \cdot b^n\] Y la potencia de un cociente es igual al cociente de las potencias del dividendo y el divisor, es decir: \[\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\] Ambas ecuaciones son expresiones generales de las propiedades de los exponentes para cualquier número real \(a\) y \(b\), y para cualquier exponente entero \(n\). Estas propiedades también se aplican a otros tipos de exponentes como fracciones, pero eso depende del contexto del problema. Las propiedades son útiles para simplificar expresiones algebraicas y facilitar la resolución de ecuaciones y otros problemas matemáticos. La imagen simplemente muestra estas dos propiedades sin ningún problema adicional que resolver. Por lo tanto, no se requiere una solución adicional más allá de entender y aplicar correctamente estas propiedades.

Solving Exponential Expression with Fractions

Давайте решим пример номер один. Имеем выражение вида: \((\frac{a^3}{c^2})^4\) Для решения этого примера применяем свойство степеней, которое гласит, что степень в степени равна произведению показателей этих степеней. Также степень частного равна частному от деления степеней числителя и знаменателя. Таким образом, возводим числитель и знаменатель дроби в требуемую степень: \((\frac{a^3}{c^2})^4 = \frac{(a^3)^4}{(c^2)^4}\) Теперь применяем указанное ранее правило, умножаем показатели степеней: \(a^{3 \times 4} = a^{12}\) \(c^{2 \times 4} = c^8\) Таким образом, выражение примет вид: \(\frac{a^{12}}{c^8}\) И это будет ответом к данному примеру.

Solving Exponential Expression with Division

La expresión que aparece en la imagen es: \[ C = [(-10)^4 \cdot (-10) \cdot (-10)^{35}] : [(-10)^{33}] \] Para resolver esta expresión, primero simplificamos y usamos las propiedades de los exponentes. Comencemos con el numerador de la expresión. Cuando multiplicamos números con la misma base, sumamos los exponentes de la base. Luego, se maneja el signo negativo usando la propiedad de que un número negativo elevado a una potencia par es positivo y a una potencia impar es negativo. \[ (-10)^4 \cdot (-10) \cdot (-10)^{35} = 10^4 \cdot -10^1 \cdot (-10)^{35} \] \[ = 10^4 \cdot -10^{1+35} \] \[ = 10^4 \cdot -10^{36} \] \[ = -10^{4+36} \] \[ = -10^{40} \] Ahora, simplificamos el denominador: \[ (-10)^{33} \] Un número negativo elevado a una potencia impar sigue siendo negativo: \[ = -10^{33} \] Ahora dividimos el numerador por el denominador: \[ \frac{-10^{40}}{-10^{33}} \] Cuando dividimos números con la misma base, restamos los exponentes: \[ = 10^{40-33} \] \[ = 10^7 \] Por lo tanto, la respuesta final es \( 10^7 \).

Simplifying a Fraction with Exponents

The expression in the image is a fraction where the numerator is \(10 \times 5^{n+4} + 125 \times 5^{n+2}\) and the denominator is \(3 \times 5^{n+3} + 20 \times 5^{n+1}\). To solve it, you can use the properties of exponents to simplify the expression. 1. Factor out the common \(5^n\) term in both numerator and denominator: Numerator: \(5^n(10 \times 5^4 + 125 \times 5^2)\) Denominator: \(5^n(3 \times 5^3 + 20 \times 5^1)\) 2. Now, cancel out the \(5^n\) term from both the numerator and denominator: Numerator simplifies to: \(10 \times 5^4 + 125 \times 5^2\) Denominator simplifies to: \(3 \times 5^3 + 20 \times 5^1\) 3. Simplify the coefficients and the remaining powers of 5: Numerator: \(10 \times 625 + 125 \times 25 = 6250 + 3125 = 9375\) Denominator: \(3 \times 125 + 20 \times 5 = 375 + 100 = 475\) 4. Simplify the fraction if possible. In this case, 9375 and 475 don't share any common factors other than 1, so the fraction is already in its simplest form: Final simplified expression: \(\frac{9375}{475}\) The final answer is a simplified fraction or you could also convert it to a decimal or mixed number if you divide 9375 by 475.

Simplifying a Rational Expression with Exponents

To simplify the given expression, we will use properties of exponents and combine like terms. Here's the expression, with each term separated for clarity: \[ \frac{10x^{5n+4} + 4.125x^{5n+2}}{3x^{5n+3} - 20x^{5n+1}} \] First, let's look at the exponents in the numerator and the denominator to see if we can simplify by factoring out common factors. We want to identify the term with the lowest exponent for \( x \) that is common to all terms. In this case, the term with the lowest exponent for \( x \) is \( x^{5n+1} \), so let's factor that out from each term: Numerator: \[ 10x^{5n+4} = 10x^{5n+1} \cdot x^3 \] \[ 4.125x^{5n+2} = 4.125x^{5n+1} \cdot x \] Denominator: \[ 3x^{5n+3} = 3x^{5n+1} \cdot x^2 \] \[ 20x^{5n+1} \] We can now rewrite the expression: \[ \frac{x^{5n+1} (10x^3 + 4.125x)}{x^{5n+1} (3x^2 - 20)} \] We simplify by canceling the common factor \( x^{5n+1} \) from both the numerator and the denominator: \[ \frac{10x^3 + 4.125x}{3x^2 - 20} \] The expression is now simplified to the extent that we can without further information about \( x \). We cannot simplify it further algebraically, as there are no common factors left to cancel between the numerator and the denominator. The result is a rational expression in terms of \( x \).

Simplifying an Algebraic Expression with Exponents and Division

To simplify the given expression, we follow the rules of exponents and division. The expression is: \[ \frac{10x^{5n+4} + 125x^{5n+2}}{3x^{5n+3} - 20x^{5n+1}} \] Let's break it down step by step: First, factor out the common factor of x in both numerator and denominator. In the numerator, the smallest power of x is \(x^{5n+2}\), and in the denominator, the smallest power is \(x^{5n+1}\). We factor these out from both parts: Numerator factor: \(x^{5n+2}\) (leaving \(10x^2 + 125\)) Denominator factor: \(x^{5n+1}\) (leaving \(3x^2 - 20\)) After factoring out, we have: \[ \frac{x^{5n+2}(10x^2 + 125)}{x^{5n+1}(3x^2 - 20)} \] Now we can simplify \(x^{5n+2}\) and \(x^{5n+1}\). Subtracting the exponents (using the properties of exponents), we get \(x^{5n+2 - (5n+1)} = x^{(5n+2) - 5n - 1} = x^1 = x\). The simplified form of the expression is: \[ \frac{x(10x^2 + 125)}{3x^2 - 20} \] We cannot simplify any further without knowing the specific values for x. This is the simplified expression in terms of x and n.

CamTutor

In regards to math, we are professionals.

appstoreappstore

Get In Touch

Email: camtutor.ai@gmail.com

Copyright © 2024 - All right reserved