Para calcular el volumen del sólido generado al girar la región acotada por las curvas \(y = x^2\) y \( y = x^3 \) alrededor del eje \(X\), utilizaremos el método del disco. Primero, debemos determinar los puntos donde las curvas se intersectan, igualando las ecuaciones: \[ x^2 = x^3 \] \[ x^2(1 - x) = 0 \] Esto nos da dos puntos de intersección: \(x = 0\) y \(x = 1\). Ahora, para aplicar el método del disco, integramos π por el radio al cuadrado (desde la curva más cercana al eje \(X\) hasta la más lejana) respecto a \(x\), entre \(x = 0\) y \(x = 1\). El radio es la distancia en y entre las dos curvas, o sea, \( x^2 - x^3 \). Así que el volumen \(V\) es: \[ V = \pi \int_{0}^{1} (x^2 - x^3)^2 dx \] \[ V = \pi \int_{0}^{1} (x^4 - 2x^5 + x^6) dx \] \[ V = \pi \left[ \frac{x^5}{5} - 2\frac{x^6}{6} + \frac{x^7}{7} \right]_{0}^{1} \] \[ V = \pi \left[ \frac{1}{5} - \frac{2}{6} + \frac{1}{7} \right] \] \[ V = \pi \left[ \frac{1}{5} - \frac{1}{3} + \frac{1}{7} \right] \] \[ V = \pi \left[ \frac{21}{105} - \frac{35}{105} + \frac{15}{105} \right] \] \[ V = \pi \left[ \frac{1}{105} \right] \] \[ V = \frac{\pi}{105} \] Por lo tanto, el volumen del sólido generado es \(\frac{\pi}{105}\) unidades cúbicas.
Bien sûr, analysons chaque pavé droit. a) Pour le premier pavé droit, nous avons les mesures suivantes : 8 cm de longueur, 5 cm de largeur et 1,5 cm de hauteur. Pour trouver la quantité d'eau qu'il peut contenir, on doit calculer le volume du pavé droit, c'est-à-dire la longueur multipliée par la largeur multipliée par la hauteur. Voici le calcul : Volume = longueur × largeur × hauteur Volume = 8 cm × 5 cm × 1,5 cm Volume = 60 cm³ Puisque 1 cm³ équivaut à 1 mL, le pavé droit peut contenir environ 60 mL d'eau, puisqu'on nous demande d'arrondir au millilitre près. b) Pour le deuxième pavé droit, nous avons : 7 cm de longueur, 7 cm de largeur (c'est un pavé droit avec une section carrée) et 21 cm de hauteur. Calculons son volume : Volume = longueur × largeur × hauteur Volume = 7 cm × 7 cm × 21 cm Volume = 1029 cm³ De nouveau, comme 1 cm³ équivaut à 1 mL, ce pavé peut contenir environ 1029 mL d'eau, ce qui est équivalent à 1,029 litres d'eau, arrondi au millilitre près. Pour convertir les millilitres en litres, on divise par 1000 (car 1 litre = 1000 millilitres). Ainsi, pour a), on a 0,060 litres, et pour b), on a environ 1,029 litres.
Pour résoudre cette question, il faut commencer par calculer le volume de chaque pavé droit en centimètres cubes (cm³) puis convertir le résultat en litres, sachant que 1 litre équivaut à 1 000 centimètres cubes. Pour le pavé droit a: Le volume \( V \) est donné par la formule \( V = longueur \times largeur \times hauteur \). Ici la longueur est 5 dm (ce qui équivaut à 50 cm), la largeur est 6 dm (60 cm) et la hauteur est 3 dm (30 cm). Donc, \( V_a = 50 \times 60 \times 30 \). Faisons le calcul: \( V_a = 50 \times 60 \times 30 \) \( V_a = 3000 \times 30 \) \( V_a = 90 000 \) cm³ Ensuite, convertissons les centimètres cubes en litres: \( 90 000 \) cm³ équivaut à \( 90 \) litres car \( 90 000 \div 1 000 = 90 \). Pour le pavé droit b: La longueur est 7 dm (70 cm), la largeur est 2,1 dm (21 cm) et la hauteur est 3 dm (30 cm). Donc, \( V_b = 70 \times 21 \times 30 \). Faisons le calcul: \( V_b = 70 \times 21 \times 30 \) \( V_b = 1470 \times 30 \) \( V_b = 44 100 \) cm³ Et convertissons les centimètres cubes en litres: \( 44 100 \) cm³ équivaut à \( 44,1 \) litres car \( 44 100 \div 1 000 = 44,1 \). Conclusion: Le pavé droit a a un volume de 90 litres d'eau, et le pavé droit b a un volume de 44,1 litres d'eau.
Para resolver este problema, podemos utilizar el método del disco para calcular el volumen del sólido de revolución generado al girar la función \( y = 3x^2 + 2x + 3 \) alrededor del eje x. La fórmula general para calcular el volumen de un sólido de revolución usando el método del disco es: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] Donde \( f(x) \) es la función que estamos rotando alrededor del eje x, y \( a \) y \( b \) son los límites de integración (en este caso, \( x = 0.90 \) hasta \( x = 1.35 \)). Sustituimos la función proporcionada en la fórmula: \[ V = \pi \int_{0.90}^{1.35} (3x^2 + 2x + 3)^2 \, dx \] Es posible expandir la expresión \( (3x^2 + 2x + 3)^2 \) y luego integrarla, pero eso resulta en una expresión bastante complicada. En lugar de eso, vamos a realizar la integración paso a paso sin expandir completamente. Primero, calculamos la integral indefinida: \[ \int (3x^2 + 2x + 3)^2 \, dx \] Puede que sea útil calcularla utilizando técnicas de integración como la integración por partes o sustitución y luego evaluar la integral definida con los límites dados. Sin embargo, es importante notar que esta tarea requeriría un trabajo algebraico sustancial y no es típico resolverla completamente a mano sin herramientas adicionales o software. Una vez que hayamos calculado la integral indefinida, sustituimos los límites de integración para encontrar el volumen del sólido de revolución. No tengo la capacidad de realizar cálculos complejos de integración directamente, pero te puedo orientar sobre cómo abordar el problema. Para obtener el resultado, te recomendaría usar un software de cálculo integral o una calculadora gráfica avanzada.
To find the volume of the composite figure in the image, consider it as two separate rectangular prisms and then add their volumes together. **First rectangular prism:** The dimensions of the larger prism include the entire length, width, and height of the figure. - Length (l₁) = 9.1 cm - Width (w₁) = 2.4 cm + 4.7 cm + 2.4 cm - Height (h₁) = 2.4 cm Calculate the volume (V₁) of the first prism: V₁ = l₁ × w₁ × h₁ V₁ = 9.1 cm × (2.4 cm + 4.7 cm + 2.4 cm) × 2.4 cm V₁ = 9.1 cm × 9.5 cm × 2.4 cm V₁ = 9.1 cm × 22.8 cm V₁ = 207.48 cm³ **Second rectangular prism (the cut-out section):** The dimensions of the cut-out are given inside the larger prism. - Length (l₂) = 4.7 cm - Width (w₂) = 2.4 cm - Height (h₂) = 2.4 cm Calculate the volume (V₂) of the cut-out section: V₂ = l₂ × w₂ × h₂ V₂ = 4.7 cm × 2.4 cm × 2.4 cm V₂ = 11.328 cm³ Now subtract V₂ from V₁ to get the total volume (V) of the composite figure: V = V₁ - V₂ V = 207.48 cm³ - 11.328 cm³ V ≈ 196.152 cm³ Round to the nearest hundredth, if necessary: V ≈ 196.15 cm³ So, the volume of the composite figure is approximately 196.15 cubic centimeters.
The photo is unclear, but it seems to show geometric formulas related to a cone. You've provided parameters for a cone: the radius (r) is 2 cm, and the height (h) is 4 cm. Assuming you want to find the volume of the cone, here is how you can calculate it using the given values: The volume (V) of a cone can be found using the formula: V = (1/3) * π * r^2 * h Plugging in the given values: r = 2 cm h = 4 cm V = (1/3) * π * (2 cm)^2 * 4 cm V = (1/3) * π * 4 cm^2 * 4 cm V = (1/3) * π * 16 cm^3 V = (16/3) * π cm^3 To get a numerical value, multiply (16/3) by the approximate value of π (3.14159265359): V ≈ (16/3) * 3.14159 cm^3 V ≈ 16.75516 cm^3 So the approximate volume of the cone is 16.75516 cubic centimeters. If you need the exact value, keep π in the calculation and the volume is (16/3)π cm³.
The question in the image is asking to "Find the volume," and a box is provided with the dimensions: \( l = 6 \) cm (length), \( w = 2 \) cm (width), \( h = 4 \) cm (height). To find the volume \( V \) of a rectangular box (also known as a rectangular prism), you use the formula: \[ V = l \times w \times h \] Plugging in the given values: \[ V = 6 \, \text{cm} \times 2 \, \text{cm} \times 4 \, \text{cm} \] \[ V = 12 \, \text{cm}^2 \times 4 \, \text{cm} \] \[ V = 48 \, \text{cm}^3 \] So the volume of the box is 48 cubic centimeters.
Let's solve each part of this question one at a time. a) To calculate the volume of a pyramid with a square base, we can use the formula: \[ V = \frac{1}{3} \times \text{base area} \times \text{height} \] In this case, the base is a square with sides of 5 cm, so the base area (A) is: \[ A = \text{side} \times \text{side} = 5\, \text{cm} \times 5\, \text{cm} = 25\, \text{cm}^2 \] The height (h) of the pyramid is given as 10 cm. Now we can calculate the volume: \[ V = \frac{1}{3} \times 25\, \text{cm}^2 \times 10\, \text{cm} \] \[ V = \frac{1}{3} \times 250\, \text{cm}^3 \] \[ V = 83.33\, \text{cm}^3 \] To convert cubic centimeters to liters, we use the fact that 1 liter equals 1000 cubic centimeters: \[ V = 83.33\, \text{cm}^3 \times \frac{1\, \text{L}}{1000\, \text{cm}^3} = 0.08333\, \text{L} \] Rounded to two decimal places, the volume in liters is: \[ V = 0.08\, \text{L} \] b) For the second part, we have a rectangular plate that is 500 mm by 300 mm, and four corners are rounded to form sectors each with a radius of 25 mm. To determine the final area of the plate, we need to find the area of the rectangle and then subtract the areas of the four sectors. First, calculate the area of the rectangle: \[ A_{\text{rectangle}} = \text{length} \times \text{width} = 500\, \text{mm} \times 300\, \text{mm} = 150,000\, \text{mm}^2 \] Each corner sector is a quarter of a circle with a radius of 25 mm. The area of a full circle is \( \pi r^2 \). A quarter of this area is \( \frac{1}{4} \pi r^2 \) for each sector: \[ A_{\text{sector}} = \frac{1}{4} \pi (25\, \text{mm})^2 \] \[ A_{\text{sector}} = \frac{1}{4} \pi \times 625\, \text{mm}^2 \] \[ A_{\text{sector}} = 156.25 \pi\, \text{mm}^2 \] Since there are four of these sectors, the total area to be subtracted is: \[ 4 \times 156.25 \pi\, \text{mm}^2 = 625 \pi\, \text{mm}^2 \] Now, subtract the total sectors' area from the rectangle's area: \[ A_{\text{final}} = 150,000\, \text{mm}^2 - 625 \pi\, \text{mm}^2 \] Assuming \( \pi \approx 3.14159 \): \[ A_{\text{final}} = 150,000\, \text{mm}^2 - 1963.495 \, \text{mm}^2 \] \[ A_{\text{final}} \approx 148,036.505\, \text{mm}^2 \] The final area of the plate, after rounding to the nearest millimeter squared, is approximately 148,037 mm².
从图片中提供的信息来看,这是一个计算水池容积的问题。图片中显示了一个梯形水池的尺寸,底部长5米,顶部长2米,深度是50厘米(0.5米),我们需要计算它的容积。 要计算梯形水池的容积,首先需要计算水池底部的面积。水池的底部是一个梯形,公式为: \[ \text{梯形面积} = \frac{(上底 + 下底) \times 高}{2} \] 请注意,题目中给的深度实际上是指水池的高度。在这个情况下,我们需要梯形的面积,然后乘以水池的深度来得到容积。 1. 首先计算梯形底面的面积: \[ \text{面积} = \frac{(5 + 2) \times 5}{2} = \frac{7 \times 5}{2} = 17.5 \text{平方米} \] 2. 然后将面积乘以深度来得到容积: \[ \text{容积} = \text{面积} \times \text{深度} = 17.5 \times 0.5 = 8.75 \text{立方米} \] 所以,水池的容积是8.75立方米。
The image displays a rectangular prism (also known as a rectangular solid or a cuboid) with labeled dimensions. The dimensions given are 13 cm for the length, 5 cm for the width (or depth), and 6 cm for the height. If the question from the image is to find the volume of the rectangular prism, the formula to use is: Volume = length × width × height Applying the given dimensions to this formula: Volume = 13 cm × 5 cm × 6 cm Volume = 65 cm² × 6 cm Volume = 390 cm³ The volume of the rectangular prism is 390 cubic centimeters.
The image depicts a rectangular prism, where the dimensions are given as follows: - Length (l): \( 16\frac{1}{2} \) cm or 16.5 cm - Width (w): 4 cm - Height (h): \( 9\frac{3}{4} \) cm or 9.75 cm Assuming you are looking to calculate the volume of this rectangular prism, the formula to use is: \[ \text{Volume} = l \times w \times h \] Let's insert the given values: \[ \text{Volume} = 16.5 \text{ cm} \times 4 \text{ cm} \times 9.75 \text{ cm} \] Now calculate each multiplication step by step: \[ \text{Volume} = 66 \text{ cm}^2 \times 9.75 \text{ cm} \] \[ \text{Volume} = 643.5 \text{ cm}^3 \] So, the volume of the given rectangular prism is 643.5 cubic centimeters.
The volume of a rectangular prism (which is the shape shown in the image) is calculated by multiplying its length, width, and height. From the image, the length is given as 9 mm, the width as 8 mm, and the height as 2 mm. Volume = length × width × height Volume = 9 mm × 8 mm × 2 mm Volume = 72 mm² × 2 mm Volume = 144 mm³ So the volume of the prism is 144 cubic millimeters.
To find the volume of this composite solid, we need to break it into smaller parts whose volumes we can calculate easily and then sum up those volumes. By looking at the shapes, we can split the figure into two rectangular prisms. Let's call the one on the left "Prism A" and the one on the right "Prism B". 1. **Volume of Prism A**: For Prism A, we have the dimensions 2 cm by 6 cm by 10 cm. The volume (V) of a rectangular prism can be found using the formula V = length × width × height. Therefore, V of Prism A = 2 cm × 6 cm × 10 cm = 120 cm³. 2. **Volume of Prism B**: For Prism B, the dimensions are not as straightforward, so we need to calculate the missing dimensions first. We can see that the height of the prism is 5 cm. The length of the prism B can be determined by subtracting the length of prism A from the total length. That is 10 cm (total length) - 6 cm (length of A) = 4 cm. So, the length of prism B is 4 cm. The width of prism B is the total width, which is 8 cm. Therefore, V of Prism B = 5 cm × 4 cm × 8 cm = 160 cm³. Now, we add the volumes of the two prisms together: Total Volume = Volume of Prism A + Volume of Prism B Total Volume = 120 cm³ + 160 cm³ = 280 cm³. The volume of the composite solid is 280 cm³.
Email: camtutor.ai@gmail.com