Pour résoudre l'expression donnée dans l'image, commençons par simplifier étape par étape : \[ \frac{{4 \sqrt{32} \times 6 \sqrt{7} \times \sqrt{100}}}{{4 \sqrt{16}}} \] Tout d'abord, simplifions les racines carrées et les nombres en dehors des racines carrées quand c'est possible : \[ \frac{{4 \times \sqrt{32} \times 6 \times \sqrt{7} \times \sqrt{100}}}{{4 \times \sqrt{16}}} \] \[ \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2} \] \[ \sqrt{100} = 10 \] \[ \sqrt{16} = 4 \] Maintenant, remplaçons les racines simplifiées dans l'expression : \[ \frac{{4 \times 4\sqrt{2} \times 6 \times \sqrt{7} \times 10}}{{4 \times 4}} \] Simplifions les nombres hors des racines : \[ \frac{{16 \times 6 \times 10 \times \sqrt{2} \times \sqrt{7}}}{{16}} \] Simplifions la fraction en annulant les 16 (multiplicateur et diviseur) : \[ \frac{{6 \times 10 \times \sqrt{2} \times \sqrt{7}}}{{1}} \] \[ 6 \times 10 = 60 \] Multiplions le reste ensemble : \[ 60 \times \sqrt{2} \times \sqrt{7} = 60\sqrt{14} \] Voilà, l'expression simplifiée est : \[ 60\sqrt{14} \] Cela donne la réponse finale en français.
Certainly! The expression given in the image is: \( \frac{\sin(\frac{3\pi}{2} + \theta) + \cot(-\theta)}{1 - \sin(2\pi - \theta)} \) Let's simplify the numerator and denominator of this fraction step by step using trigonometric identities: 1. \(\sin(\frac{3\pi}{2} + \theta)\) can be simplified using the identity that \(\sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b)\): Since \(\sin(\frac{3\pi}{2}) = -1\) and \(\cos(\theta) = \cos(\theta)\), we get: \(\sin(\frac{3\pi}{2} + \theta) = \sin(\frac{3\pi}{2})\cos(\theta) + \cos(\frac{3\pi}{2})\sin(\theta) = -1 \cdot \cos(\theta) + 0 \cdot \sin(\theta) = -\cos(\theta)\) 2. \(\cot(-\theta) = \frac{\cos(-\theta)}{\sin(-\theta)}\) can be further simplified using the facts that \(\cos\) is an even function and \(\sin\) is an odd function, which results in \(\cos(-\theta) = \cos(\theta)\) and \(\sin(-\theta) = -\sin(\theta)\): \(\cot(-\theta) = \frac{\cos(\theta)}{-\sin(\theta)} = -\cot(\theta)\) Putting these together, the numerator becomes: \(-\cos(\theta) - \cot(\theta)\) For the denominator: 1. \(\sin(2\pi - \theta)\) can be simplified using the identity for \(\sin(\pi - x) = \sin(x)\), as \(2\pi - \theta\) is the same as \(\pi - (\pi - \theta)\): \(\sin(2\pi - \theta) = \sin(\pi - (\pi - \theta)) = \sin(\pi - \theta)\) Since \(\sin(\pi - x) = \sin(x)\), we get: \(\sin(2\pi - \theta) = \sin(\theta)\) So the original expression simplifies to: \( \frac{-\cos(\theta) - \cot(\theta)}{1 - \sin(\theta)} \) Now let's simplify further: Since \(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\), we can rewrite the numerator in terms of sines and cosines, getting: \( \frac{-\cos(\theta) - \frac{\cos(\theta)}{\sin(\theta)}}{1 - \sin(\theta)} \) To combine the terms in the numerator, we get a common denominator of \(\sin(\theta)\): \( \frac{-\cos(\theta)\sin(\theta) - \cos(\theta)}{\sin(\theta)(1 - \sin(\theta))} \) Now, we factor out \(-\cos(\theta)\) from the numerator: \( \frac{-\cos(\theta)(\sin(\theta) + 1)}{\sin(\theta)(1 - \sin(\theta))} \) Observing that \(\sin(\theta) + 1\) is the additive inverse of \(1 - \sin(\theta)\), we can cancel the corresponding terms in the numerator and denominator, yielding: \( \frac{-\cos(\theta)}{\sin(\theta)} \) Finally, this expression can be simplified to \( -\cot(\theta) \) So the simplified form of the original expression is \( -\cot(\theta) \).
Email: camtutor.ai@gmail.com