Para resolver la operación mostrada en la imagen, debemos aplicar la propiedad de exponentes que indica que cuando elevamos un producto a una potencia, podemos elevar cada factor a esa potencia. Usaremos la siguiente propiedad: \((ab)^n = a^n b^n\) La operación en la imagen es \((-7a^2b^3)^2\). Aplicando la regla de los exponentes, podemos resolver: \[ (-7a^2b^3)^2 = (-7)^2 (a^2)^2 (b^3)^2 \] Ahora, elevamos cada factor al cuadrado individualmente: \[ (-7)^2 = 49 \] \[ (a^2)^2 = a^{2\cdot2} = a^4 \] \[ (b^3)^2 = b^{3\cdot2} = b^6 \] Por lo tanto, al combinar estos resultados, obtenemos: \[ (-7a^2b^3)^2 = 49a^4b^6 \] Este es el resultado de la operación dada.
The expression in the image shows \(z^8\) multiplied by \(\frac{1}{z^7}\). To simplify this expression, you can use the property of exponents that states when dividing like bases, you subtract the exponents: \(z^8 \cdot \frac{1}{z^7} = \frac{z^8}{z^7} = z^{8-7} = z^1 = z\) So the simplified form of the expression is \(z\).
To simplify the expression \(\frac{2^{n+1}}{2^n * 2}\), you can use the properties of exponents. Here is how you can simplify it step by step: 1. The expression \(\frac{2^{n+1}}{2^n * 2}\) can be rewritten by separating the terms in the denominator, so you have \(\frac{2^{n+1}}{2^n \cdot 2^1}\). 2. Now you can apply the quotient rule for exponents, which states that when dividing like bases, you subtract the exponents: \(\frac{2^{n+1}}{2^n}\) becomes \(2^{(n+1)-n} = 2^1 = 2\). 3. So now you have \(2 \div 2^1\). 4. Applying the division rule for exponents again (or recognizing that any number divided by itself is 1), you have \(2^1 \div 2^1 = 2^{1-1} = 2^0 = 1\). The simplified form of the expression is \(1\).
Email: camtutor.ai@gmail.com