<p>Let the length of BE be \( x \). Hence, \( EG = \frac{5}{6} AD \) and \( BF = \frac{5}{2} x \).</p> <p>Since \( BE = \frac{3}{4} AE \) and \( EG = \frac{5}{6} AD \), let \( AE = 4x \), so \( AD = 6x \) and \( EG = 5x \).</p> <p>The area of rectangle \( ABCD \) is given as 112 \( cm^2 \), which is equal to \( AD \times AB \). Since \( AD = 6x \), we have:</p> <p>\( AB \cdot 6x = 112 \)</p> <p>\( AB = \frac{112}{6x} \)</p> <p>Now, \( AF = AE + EF = AE + BF - BE = 4x + \frac{5}{2}x - x = \frac{11}{2}x \).</p> <p>So the area of triangle \( AEF \) is:</p> <p>\( \frac{1}{2} AF \cdot BE = \frac{1}{2} \cdot \frac{11}{2}x \cdot x = \frac{11}{4}x^2 \)</p> <p>The area of triangle \( EGF \) is:</p> <p>\( \frac{1}{2} EG \cdot BF = \frac{1}{2} \cdot 5x \cdot \frac{5}{2}x = \frac{25}{4}x^2 \)</p> <p>To find the area of \( EGBF \), we sum the areas of \( AEF \) and \( EGF \):</p> <p>\( \frac{11}{4}x^2 + \frac{25}{4}x^2 = \frac{36}{4}x^2 = 9x^2 \)</p> <p>Now, the area of \( ABCD \) is the length times the width, \( AB \times AD \), which is \( \frac{112}{6x} \times 6x = 112 \).</p> <p>To find \( x \), we set up the equation:</p> <p>\( AB \cdot AD = \frac{112}{6x} \cdot 6x = 112 \)</p> <p>\( 112 = 112 \)</p> <p>This is always true, hence we can say that \( x \) can take any value. Let's find \( x \) in terms of \( AB \):</p> <p>\( AB = \frac{112}{6x} \)</p> <p>\( x = \frac{112}{6AB} \)</p> <p>Now, substitute \( x \) in terms of \( AB \) into the area of \( EGBF \):</p> <p>\( Area \;of\; EGBF = 9x^2 = 9 \left( \frac{112}{6AB} \right)^2 \)</p> <p>\( Area \;of\; EGBF = 9 \cdot \frac{112^2}{36 \cdot AB^2} \)</p> <p>\( Area \;of\; EGBF = \frac{112^2}{4 \cdot AB^2} \)</p> <p>Since \( Area \;of\; ABCD = AB \cdot AD = AB \cdot 6x = 112 \), \( x = \frac{112}{6AB} \).</p> <p>Put \( x \) into \( Area \;of\; EGBF \):</p> <p>\( Area \;of\; EGBF = \frac{112^2}{4 \cdot (\frac{112}{6x})^2} \)</p> <p>\( Area \;of\; EGBF = \frac{112^2 \cdot 36x^2}{4 \cdot 112^2} \)</p> <p>\( Area \;of\; EGBF = \frac{36x^2}{4} \)</p> <p>\( Area \;of\; EGBF = 9x^2 \)</p> <p>Since we know that \( 6x = AD \) and \( AD \cdot AB = 112 \), it follows that:</p> <p>\( x^2 = \left( \frac{AD}{6} \right)^2 \)</p> <p>\( x^2 = \left( \frac{112}{6AB} \right)^2 \)</p> <p>\( x^2 = \frac{112^2}{36AB^2} \)</p> <p>The requested area is \( EGBF = 9x^2 \), which after substitution becomes:</p> <p>\( 9 \cdot \frac{112^2}{36AB^2} \)</p> <p>Reducing the fraction gives us:</p> <p>\( \frac{112^2}{4AB^2} \)</p> <p>Since \( AB \times AD = 112 \), let \( AB = a \) and \( AD = \frac{112}{a} \).</p> <p>Substitute \( AB = a \) into the expression for area:</p> <p>\( \frac{112^2}{4a^2} \)</p> <p>Now, express \( AB^2 \) as \( a^2 \), knowing \( a \cdot \frac{112}{a} = 112 \)</p> <p>\( \frac{112^2}{4 \cdot \left( \frac{112}{AD} \right)^2} \)</p> <p>Simplifying, we find:</p> <p>\( \frac{112^2 \cdot AD^2}{4 \cdot 112^2} \)</p> <p>\( \frac{AD^2}{4} \)</p> <p>Since \( AD = 6x \), substitute back to find \( x \):</p> <p>\( \frac{(6x)^2}{4} = \frac{36x^2}{4} = 9x^2 \)</p> <p>Since the area values must match, solving the equation \( 9x^2 = 112 \) to find \( x \):</p> <p>\( x^2 = \frac{112}{9} \)</p> <p>\( x = \frac{\sqrt{112}}{3} \)</p> <p>Finally, calculate the area of \( EGBF \):</p> <p>\( Area \;of\; EGBF = 9 \left( \frac{\sqrt{112}}{3} \right)^2 \)</p> <p>\( Area \;of\; EGBF = 9 \cdot \frac{112}{9} \)</p> <p>\( Area \;of\; EGBF = 112 \; cm^2 \)</p> <p>Thus, the area of quadrilateral \( EGBF \) is 112 \( cm^2 \).</p>
Claro, vamos a resolver el problema que se muestra en la imagen usando conceptos de geometría. En este problema, nos muestran un triángulo \( ABC \) en el cual el segmento \( \overline{DE} \) es paralelo al segmento \( \overline{BC} \), y se indican algunas medidas de longitudes: \( AE = 5 \) cm y \( EC = 4 \) cm. Nos piden encontrar el valor de \( x \) en función de \( e \). Usaremos la propiedad de los triángulos semejantes que dice que si una línea es paralela a uno de los lados de un triángulo y corta a los otros dos lados, entonces divide a esos dos lados en segmentos proporcionales. El triángulo pequeño \( ADE \) es semejante al triángulo grande \( ABC \) porque tienen dos ángulos congruentes (causados por la línea paralela y los ángulos correspondientes), por lo que podemos plantear la relación: \[ \frac{AE}{EC} = \frac{AD}{DB} \] Dado que \( AE = 5 \) cm y \( EC = 4 \) cm, la relación queda: \[ \frac{5}{4} = \frac{AD}{DB} \] Ahora, podemos expresar \( DB \) como la longitud total de \( BC \) menos la longitud de \( AD \), es decir, \( DB = (e+5) - AD \), donde usamos que \( AD = 5 + x \) y \( BC = e \). Sin embargo, notemos que para encontrar \( x \) en función de \( e \), realmente no necesitamos calcular \( DB \) ya que \( BC \) y \( AD \) están en términos de \( x \) y \( e \). Ahora calculamos \( x \) en función de \( e \) utilizando la semejanza de triángulos: \[ \frac{5}{4} = \frac{5 + x}{e} \] Multiplicaremos en cruz para resolver por \( x \): \[ 5e = 4(5 + x) \] \[ 5e = 20 + 4x \] Restamos 20 de ambos lados de la ecuación para despejar \( 4x \): \[ 4x = 5e - 20 \] Finalmente, dividimos ambos lados entre 4 para obtener \( x \): \[ x = \frac{5e - 20}{4} \] Esa es la expresión de \( x \) en función de \( e \). En las opciones proporcionadas, este resultado corresponde a: \[ D) \frac{5e - 20}{4} \] Por lo tanto, la respuesta correcta es la opción D.
Email: camtutor.ai@gmail.com