Example Question - comparison test

Here are examples of questions we've helped users solve.

Convergence Test for Series Involving Powers and Exponentials

好的,给定的数学问题是求无穷级数 ∑_{n=1}^∞ n^2 * 2^(3n+1) 的收敛性。 要解这个问题,我们需要判定该级数是否收敛。一个常用的方法是比较检验法。首先,让我们尝试逐项比较这个级数与一个已知收敛或发散的级数。 我们可以将给定的级数与几何级数进行比较。几何级数 ∑_{n=1}^∞ a * r^n(其中 |r| < 1)是收敛的。在这个情况下,我们可以看到级数的一般项 a_n = n^2 * 2^(3n+1) 有一个因子 2^(3n),这提示我们可以尝试与几何级数 2^(3n) 进行比较。 比较级数可以是 8^n(因为 2^(3n) = (2^3)^n = 8^n),但是,我们需要确保比较级数的每一项都小于或等于给定级数的相应项。 现在,让我们进行比较: a_n = n^2 * 2^(3n+1) = n^2 * 2 * 8^n 我们知道 ∑ 8^n 是一个发散的级数,因为它是一个几何级数,其公比大于1。为了比较,我们需要找出一个恰当的发散级数,这样 n^2 * 2 * 8^n 是否比它大。我们可以明显地看出 n^2 * 2 会随着 n 的增大而增大,所以这个级数将会比 8^n 大很多。 因此,级数 ∑_{n=1}^∞ n^2 * 2^(3n+1) 是发散的,因为其每一项都随 n 的增大而无限增大,且与发散的几何级数 8^n 相比较,多了一个增长因子 n^2 * 2。因此,这不是一个收敛的级数。

Comparison Test for Convergence of Series with Cosine Function

在使用比较检验法来确定级数 \(\sum_{k=1}^{\infty} \frac{2 + \cos k}{k^3}\) 的收敛性或发散性时,我们应该选一个与给定级数的每一项都相关的级数进行比较,且该级数的收敛性或发散性是已知的。 因为余弦函数的值域是 \([-1, 1]\),所以对于所有的 \(k\),有 \(-1 \leq \cos k \leq 1\)。这意味着 \(\cos k\) 对 \(2 + \cos k\) 的值的影响是有限的,并且每一项 \(\frac{2 + \cos k}{k^3}\) 将会被包含在 \(\frac{1}{k^3}\) 和 \(\frac{3}{k^3}\) 之间。 我们可以忽略 \(2 + \cos k\) 中的 \(\cos k\) 因素,因为 \(2 + \cos k\) 的最小值是 \(2 - 1 = 1\),最大值是 \(2 + 1 = 3\)。所以这个级数的每一项至少和 \(\frac{1}{k^3}\) 一样大,至多和 \(\frac{3}{k^3}\) 一样大。其实直接用 \(\frac{2}{k^3}\) 比较就足够了,因为它能良好地代表原级数的行为,而且我们知道 \(p\)-级数 \(\sum_{k=1}^{\infty} \frac{1}{k^p}\) 当 \(p>1\) 时收敛。 所以,我们可以将给定的级数 \(\sum_{k=1}^{\infty} \frac{2 + \cos k}{k^3}\) 与 \(p\)-级数 \(\sum_{k=1}^{\infty} \frac{2}{k^3}\) 比较,因为 \(p=3 > 1\),后者是收敛的。根据比较检验法,如果我们比较的级数收敛,且所有的比较项都大于等于原级数的对应项(正项级数),那么原级数也收敛。 综上所述,根据比较检验法来确定原级数的收敛性,我们应选 (B) \(\sum_{k=1}^{\infty} \frac{2}{k^3}\) 作为比较级数。

Evaluating an Infinite Series

The image you've provided is not clear, and the text on it appears to be distorted. However, I can make out that it seems to be an infinite sum (a series) starting from n=1 to infinity. The summation term looks like \(\frac{1}{n^2+2}\). If my interpretation is correct, then you are being asked to evaluate the infinite series: \[ \sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \] To solve this, note that this series does not appear to simplify easily into a form that can be evaluated using elementary functions, nor does it resemble a known convergent series like the geometric or telescoping series. To determine whether the series converges, we can apply the convergence tests that are applicable to series of positive terms such as the comparison test, the ratio test, or the integral test. Given that the series has terms in the form \(\frac{1}{n^2+2}\), we can compare it to the series \(\frac{1}{n^2}\), which is a p-series with p=2. Since a p-series with p>1 converges, and \(\frac{1}{n^2+2} < \frac{1}{n^2}\) for all n, our series also converges by the comparison test. However, determining the exact sum of the series would generally require more advanced techniques and cannot be expressed in terms of elementary functions. You may need numerical methods or special functions to find an approximate value of the series sum. If my interpretation of the image is incorrect, please provide a clearer image or the correct expression for further assistance.

CamTutor

In regards to math, we are professionals.

appstoreappstore

Get In Touch

Email: camtutor.ai@gmail.com

Copyright © 2024 - All right reserved