Given:
\(\vec{F_1} = 800 \text{ N} \ (\text{upwards along the y-axis})\)
\(\vec{F_2} = 600 \text{ N} \ (\text{30 degrees below the -x-axis})\)
To solve for the resultant force \(\vec{R}\), break \(\vec{F_2}\) into its x and y components.
\(F_{2x} = 600 \cos(30^\circ)\)
\(F_{2y} = -600 \sin(30^\circ)\) (The y-component is negative because it is downward.)
Calculate \(F_{2x}\) and \(F_{2y}\):
\(F_{2x} = 600 \times \frac{\sqrt{3}}{2} = 300\sqrt{3}\) N
\(F_{2y} = -600 \times \frac{1}{2} = -300\) N
The resultant force \(\vec{R}\) in the x and y components is:
\(R_x = F_{2x}\) because there is no x-component for \(\vec{F_1}\).
\(R_y = F_{1} + F_{2y}\)
Calculate \(R_x\) and \(R_y\):
\(R_x = 300\sqrt{3}\) N
\(R_y = 800 - 300 = 500\) N
Now calculate the magnitude of the resultant vector \(|\vec{R}|\):
\(|\vec{R}| = \sqrt{R_x^2 + R_y^2}\)
\(|\vec{R}| = \sqrt{(300\sqrt{3})^2 + (500)^2}\)
\(|\vec{R}| = \sqrt{(900 \times 3) + (250000)}\)
\(|\vec{R}| = \sqrt{2700 + 250000}\)
\(|\vec{R}| = \sqrt{252700}\)
\(|\vec{R}| \approx 502.7\) N
To find the direction θ measured counterclockwise from the positive x-axis:
\(\tan(\theta) = \frac{R_y}{R_x}\)
\(\theta = \arctan\left(\frac{500}{300\sqrt{3}}\right)\)
\(\theta = \arctan\left(\frac{500}{300 \times \frac{\sqrt{3}}{2}}\right)\)
\(\theta = \arctan\left(\frac{500}{150\sqrt{3}}\right)\)
\(\theta \approx \arctan\left(\frac{500}{259.81}\right)\)
\(\theta \approx \arctan(1.925)\)
\(\theta \approx 62.5^\circ\) (above the negative x-axis)
Finally, from the positive x-axis, add 180 degrees because it is on the left half of the coordinate system:
\(\theta_{\text{from positive x-axis}} = 180^\circ + \theta\)
\(\theta_{\text{from positive x-axis}} = 180^\circ + 62.5^\circ\)
\(\theta_{\text{from positive x-axis}} = 242.5^\circ\)
Email: camtutor.ai@gmail.com