<p>P: Compound statement is true.</p> <p>Q: K can have any real value.</p> <p>R: The volume of cone is \(\frac{1}{3}\pi r^2h\).</p> <p>The relationship given is \(Q \to P\), which reads as "If Q then P".</p> <p>Since P is true, it does not give us information about the truth value of Q because a true conclusion can come from both a true or false premise. That means K can have any real value.</p> <p>Given R: The volume of a cone formula is \(V = \frac{1}{3}\pi r^2h\), where \(r\) is the radius and \(h\) is the height of the cone. This is generally true for any cone, and the given statement R is a standard formula used to calculate the volume of a cone.</p>
Claro, te ayudaré a resolver el problema. El problema nos pide calcular el volumen de un cono generado al girar una recta alrededor del eje x. La recta dada es y = 2x + 1 y queremos encontrar el volumen entre x = 1 y x = 5. Vamos a usar el método de los discos para rotación alrededor del eje x, que nos dice que el volumen \(V\) generado por la rotación de la gráfica de una función \(y=f(x)\) alrededor del eje x, desde \(x=a\) a \(x=b\), es dado por la integral: \[V = \pi \int_{a}^{b} [f(x)]^2 dx\] Ahora, sustituimos \(y=2x+1\) en la fórmula del volumen para obtener \(f(x) = 2x + 1\). El intervalo de integración es de \(a=1\) a \(b=5\). \[V = \pi \int_{1}^{5} (2x + 1)^2 dx\] Ahora, procedemos a resolver la integral: \[V = \pi \int_{1}^{5} (4x^2 + 4x + 1) dx\] \[V = \pi \left[ \frac{4}{3}x^3 + 2x^2 + x \right]_{1}^{5}\] Calculamos el valor de la integral definida: \[V = \pi \left[ \frac{4}{3}(5)^3 + 2(5)^2 + 5 - \left( \frac{4}{3}(1)^3 + 2(1)^2 + 1 \right) \right]\] \[V = \pi \left[ \frac{4}{3}(125) + 2(25) + 5 - \left( \frac{4}{3} + 2 + 1 \right) \right]\] \[V = \pi \left[ \frac{500}{3} + 50 + 5 - \frac{7}{3} \right]\] \[V = \pi \left[ \frac{500}{3} + \frac{150}{3} + \frac{15}{3} - \frac{7}{3} \right]\] \[V = \pi \left[ \frac{665}{3} \right]\] \[V = \frac{665\pi}{3}\] Por lo tanto, el volumen del cono generado al girar la recta y = 2x + 1 alrededor del eje x, desde x = 1 hasta x = 5, es \(\frac{665\pi}{3}\) unidades cúbicas.
To find the radius of the cone, we can use the formula for the volume of a cone: \[ V = \frac{1}{3}\pi r^2 h \] Where: - \( V \) is the volume of the cone, - \( r \) is the radius of the base of the cone, - \( h \) is the height of the cone, - \( \pi \) is approximately 3.14 (given). The volume (\( V \)) is given as 37.68 cubic millimeters, and the height (\( h \)) is given as 4 millimeters. To find \( r \), we can rearrange the formula to solve for \( r^2 \): \[ r^2 = \frac{3V}{\pi h} \] Now we'll use the given values: \[ r^2 = \frac{3 \times 37.68}{3.14 \times 4} \] First, let's calculate the numerator of the fraction: \[ 3 \times 37.68 = 113.04 \] And the denominator of the fraction: \[ 3.14 \times 4 = 12.56 \] Next, we'll divide these two results to find \( r^2 \): \[ r^2 = \frac{113.04}{12.56} \approx 9 \] Now take the square root of 9 to find the radius \( r \): \[ r = \sqrt{9} = 3 \] So the radius \( r \) of the cone is 3 millimeters. Since the problem asks to round our answer to the nearest hundredth, our final answer in two decimal places would still be: \[ r \approx 3.00 \text{ millimeters} \]
To complete the table, we will use the following relationships and formulas: 1. The diameter of a circle is twice the radius: \(d = 2r\). 2. The area of the base (which is a circle) is given by \(A = \pi r^2\). 3. The volume of a cone is given by \(V = \frac{1}{3} \pi r^2 h\), where \(h\) is the height of the cone. Let's fill in the missing values for each row of the table: For the second row: - Given the diameter as 3 units, the radius \(r\) is half of that, so \(r = \frac{3}{2}\) units. - The area of the base \(A\) is \(\pi r^2 = \pi (\frac{3}{2})^2 = \frac{9}{4} \pi\) square units. - The given volume \(V\) is \(27\pi\) cubic units, we can use it to find the height \(h\): \(V = \frac{1}{3} \pi r^2 h\) \(27\pi = \frac{1}{3} \pi \left(\frac{3}{2}\right)^2 h\) \(27\pi = \frac{1}{3} \pi \frac{9}{4} h\) \(27\pi = \pi \frac{9}{4} \frac{1}{3} h\) \(27 = \frac{9}{12} h\) \(h = 27 \times \frac{12}{9}\) \(h = 36\) So the height is 36 units. For the third row: - Given the radius \(r = 10\) units, the diameter \(d\) is twice that, so \(d = 20\) units. - The area of the base \(A\) is \(\pi r^2 = \pi (10)^2 = 100\pi\) square units. - The height \(h\) is 12 units, as given, so no calculation is needed for that. For the fourth row: - Given the volume \(V = 3.14\) cubic units and height \(h = 3\) units, we can find the radius \(r\): \(V = \frac{1}{3} \pi r^2 h\) \(3.14 = \frac{1}{3} \pi r^2 \cdot 3\) \(3.14 = \pi r^2\) \(r^2 = \frac{3.14}{\pi}\) Because \(\pi\) is approximately 3.14, \(r^2\) is approximately 1, hence \(r \approx 1\) unit. - The approximate diameter \(d\) is twice the radius, so \(d \approx 2\) units. - The area of the base \(A\) is \(\pi r^2 = \pi (1)^2 = \pi\) square units, which we can approximate as 3.14 square units since the volume was given to this level of precision. The completed table should look like this: - Diameter: 2, 3, 20, 2 - Radius: 1, 1.5, 10, 1 - Area of the base: \(\pi\), \(2.25\pi\), \(100\pi\), \(\pi\) - Height: 3, 36, 12, 3 - Volume of Cone: \(3.14\), \(27\pi\), \(400\pi\), \(3.14\)
The question in the image is asking for the volume of a cone. The formula to calculate the volume of a cone is: \[ \text{Volume} = \frac{1}{3} \pi r^2 h \] where \( \pi \) is Pi, approximately 3.14159, \( r \) is the radius of the base of the cone, and \( h \) is the height of the cone. According to the image, the ice cream cone has a diameter of 3 inches, which means the radius \( r \) is half of that, so \( r = 1.5 \) inches. The height \( h \) of the cone is given as 7 inches. Now plug these values into the formula to find the volume: \[ \text{Volume} = \frac{1}{3} \pi (1.5)^2 \cdot 7 \] \[ \text{Volume} = \frac{1}{3} \pi \cdot 2.25 \cdot 7 \] \[ \text{Volume} = \frac{1}{3} \cdot 3.14159 \cdot 2.25 \cdot 7 \] \[ \text{Volume} = \frac{1}{3} \cdot 3.14159 \cdot 15.75 \] \[ \text{Volume} = 3.14159 \cdot 5.25 \] \[ \text{Volume} = 16.49351 \cdot 3 \] \[ \text{Volume} = 49.480525 \text{ in}^3 \] Rounded to the nearest tenth, the volume is approximately 49.5 cubic inches. Based on the answer choices provided in the image, none of them match this exact answer. It might be a good idea to double-check the calculations or see if the image contains any error in the question or answer options.
Email: camtutor.ai@gmail.com