The problem asks for the real and imaginary parts of the complex number \(\frac{z_1}{z_2}\), where \(z_1 = x + 4j\) and \(z_2 = x + 2j\). To find \(\frac{z_1}{z_2}\), you can divide \(z_1\) by \(z_2\). Here's how you do it: \[ \frac{z_1}{z_2} = \frac{x + 4j}{x + 2j} \] To divide two complex numbers, you can multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{x + 4j}{x + 2j} \cdot \frac{x - 2j}{x - 2j} = \frac{(x + 4j)(x - 2j)}{x^2 - (2j)^2} \] Computing the products in the numerator and simplifying the denominator (using \(j^2 = -1\)): \[ \frac{x^2 - 2jx + 4xj - 8j^2}{x^2 - 4j^2} = \frac{x^2 + 2xj - 8(-1)}{x^2 - 4(-1)} \] Simplify further: \[ \frac{x^2 + 2xj + 8}{x^2 + 4} \] Now you have the complex number in fractional form. Let's separate it into real and imaginary parts: The real part is: \[ \frac{x^2 + 8}{x^2 + 4} \] The imaginary part is: \[ \frac{2xj}{x^2 + 4} \] Hence, the real part of \(\frac{z_1}{z_2}\) is \(\frac{x^2 + 8}{x^2 + 4}\) and the imaginary part is \(\frac{2x}{x^2 + 4}j\).
The image displays a mathematical problem: \[ \text{Find the value of a and b if } bi^{2} + \frac{4}{3}i - \sqrt{3} = a + bi\sqrt{3}. \] To solve this, we need to realize that \(i^2 = -1\) and group real and imaginary parts separately. \[ bi^{2} + \frac{4}{3}i - \sqrt{3} = a + bi\sqrt{3}, \] \[ b(-1) + \frac{4}{3}i - \sqrt{3} = a + bi\sqrt{3}. \] Now, group real parts together and imaginary parts together: Real parts: \(-b - \sqrt{3} = a,\) Imaginary parts: \(\frac{4}{3}i = bi\sqrt{3}.\) Now let's isolate \(b\) from the imaginary part: \[ b = \frac{\frac{4}{3}}{\sqrt{3}} = \frac{4}{3\sqrt{3}} = \frac{4}{3}\cdot\frac{\sqrt{3}}{3} = \frac{4\sqrt{3}}{9}.\] Then substitute \(b\) into the real part to find \(a\): \[ -\left(\frac{4\sqrt{3}}{9}\right) - \sqrt{3} = a,\] \[ a = -\left(\frac{4\sqrt{3}}{9} + \frac{9\sqrt{3}}{9}\right), \] \[ a = -\left(\frac{4\sqrt{3} + 9\sqrt{3}}{9}\right), \] \[ a = -\left(\frac{13\sqrt{3}}{9}\right). \] Thus, the values for \(a\) and \(b\) are: \[ a = -\frac{13\sqrt{3}}{9}, \] \[ b = \frac{4\sqrt{3}}{9}. \]
Email: camtutor.ai@gmail.com