Solving Negative Exponents Exercise
The expression \( 5^{-3} \) can be solved by applying the rule of negative exponents, which states that \( a^{-n} = \frac{1}{a^n} \) for any non-zero base \( a \) and positive exponent \( n \).
Therefore, in this case:
\( 5^{-3} = \frac{1}{5^3} \)
Now, we can calculate \( 5^3 \):
\( 5^3 = 5 \times 5 \times 5 = 125 \)
So the expression becomes:
\( 5^{-3} = \frac{1}{125} \)
Hence, the solution is \( \frac{1}{125} \).