Example Question - exponents properties

Here are examples of questions we've helped users solve.

Algebraic Expression Simplification

Para resolver la pregunta proporcionada en la imagen, parece que tenemos que simplificar la expresión algebraica. La expresión es: \[\frac{x^2 y^{-1/3}}{x^{-3} y^{1/2}} - \frac{7x^2}{2xy} \cdot \frac{10x^{-1}y}{x^{-1/2}y^1} + \frac{4x^5}{12x^4y}\] Empecemos por simplificar cada término individualmente: Para el primer término, utilizamos las propiedades de los exponentes para dividir las bases iguales restando los exponentes: \[\frac{x^2 y^{-1/3}}{x^{-3} y^{1/2}} = x^{2 - (-3)} y^{-\frac{1}{3} - \frac{1}{2}} = x^{2 + 3} y^{-\frac{1}{3} - \frac{2}{6}} = x^5 y^{-\frac{3}{6}} = x^5 y^{-\frac{1}{2}}\] Para el segundo término, primero simplificamos la fracción compuesta: \[\frac{7x^2}{2xy} \cdot \frac{10x^{-1}y}{x^{-1/2}y^1} = \frac{7x^2 \cdot 10x^{-1}y}{2xy \cdot x^{-1/2}y} = \frac{70x^{2-1}}{2x^{1-(-1/2)}y^{1+1}} = \frac{70x^{1}}{2x^{3/2}y^{2}}\] Dado que \(70/2 = 35\) y \(x^{1 - 3/2} = x^{-1/2}\), tenemos: \[\frac{70x^{1}}{2x^{3/2}y^{2}} = \frac{35}{y^{2}x^{1/2}}\] Para el tercer término, simplemente reducimos la fracción \(\frac{4x^5}{12x^4y}\): \[\frac{4x^5}{12x^4y} = \frac{4}{12} \cdot \frac{x^5}{x^4y} = \frac{1}{3} x^{5-4}y^{-1} = \frac{1}{3}xy^{-1}\] Ahora combinamos los términos simplificados: \[x^5 y^{-\frac{1}{2}} - \frac{35}{y^2x^{1/2}} + \frac{1}{3}xy^{-1}\] Este es la expresión simplificada de términos individuales de la expresión inicial en la imagen. Dada la complejidad de combinarlos en una expresión simple y común, podría ser más apropiado dejarlos en esta forma, a menos que tengamos un denominador común o una indicación de que necesitamos combinarlos de alguna manera específica. Si se necesita una simplificación adicional o una manipulación adicional, eso requeriría un contexto adicional o instrucciones específicas.

Solving Exponential Expressions

To solve the given expression, we will use the properties of exponents: The expression is \( \left( \frac{(5^3)^2}{(5^2)^4} \right) \). Now, let's apply the power of a power property for exponents, which states that \((a^m)^n = a^{(m \cdot n)}\): For the numerator, \((5^3)^2 = 5^{(3 \cdot 2)} = 5^6\), For the denominator, \((5^2)^4 = 5^{(2 \cdot 4)} = 5^8\), Now, rewrite the expression with the simplified exponents: \( \frac{5^6}{5^8} \). Using the quotient of powers property, which states that \(a^m/a^n = a^{(m-n)}\), we subtract the exponents: \( 5^{(6-8)} = 5^{-2} \). The negative exponent rule states that \(a^{-n} = \frac{1}{a^n}\): Therefore, \(5^{-2} = \frac{1}{5^2}\). Since \(5^2 = 25\), the expression simplifies to: \( \frac{1}{25} \). Therefore, the answer is option (1) \( \frac{1}{25} \).

Simplifying Exponential Expressions

To simplify the expression \(\frac{2^{n+1}}{2^n * 2}\), you can use the properties of exponents. Here is how you can simplify it step by step: 1. The expression \(\frac{2^{n+1}}{2^n * 2}\) can be rewritten by separating the terms in the denominator, so you have \(\frac{2^{n+1}}{2^n \cdot 2^1}\). 2. Now you can apply the quotient rule for exponents, which states that when dividing like bases, you subtract the exponents: \(\frac{2^{n+1}}{2^n}\) becomes \(2^{(n+1)-n} = 2^1 = 2\). 3. So now you have \(2 \div 2^1\). 4. Applying the division rule for exponents again (or recognizing that any number divided by itself is 1), you have \(2^1 \div 2^1 = 2^{1-1} = 2^0 = 1\). The simplified form of the expression is \(1\).

Solving a System of Exponential Equations

The image shows a system of equations that needs to be solved: \(2^{x+y} = 8\) and \(2^{3x-y} = 128\) For the first equation, we can rewrite 8 as \(2^3\) since \(2^3 = 8\). This gives: \(2^{x+y} = 2^3\) From the property of exponents that states if \(a^m = a^n\) then \(m=n\) for any non-zero base \(a\), we get: \(x + y = 3\) (Equation 1) For the second equation, we can rewrite 128 as \(2^7\), since \(2^7 = 128\). This gives: \(2^{3x-y} = 2^7\) Using the same property of exponents, we get: \(3x - y = 7\) (Equation 2) Now we have a system of two linear equations in two variables (\(x\) and \(y\)): 1. \(x + y = 3\) 2. \(3x - y = 7\) We can solve this system by adding Equation 1 and Equation 2 together to eliminate \(y\): \(x + y + 3x - y = 3 + 7\) \(4x = 10\) \(x = 10/4\) \(x = 2.5\) With \(x\) found, we can substitute it back into Equation 1 to find \(y\): \(2.5 + y = 3\) \(y = 3 - 2.5\) \(y = 0.5\) Therefore, the solution to the system is \(x = 2.5\) and \(y = 0.5\).

CamTutor

In regards to math, we are professionals.

appstoreappstore

Get In Touch

Email: camtutor.ai@gmail.com

Copyright © 2024 - All right reserved