(a) To calculate the Total Variable Cost (TVC) and Total Cost (TC): <p></p> <p>TVC = Output \times Marginal Cost</p> <p>TC = Total Fixed Cost + TVC</p> <p>At output 1: TVC = 1 \times 10 = 10, TC = 20 + 10 = 30</p> <p>At output 2: TVC = 2 \times 20 = 40, TC = 20 + 40 = 60</p> <p>At output 3: TVC = 3 \times 30 = 90, TC = 20 + 90 = 110</p> <p>At output 4: TVC = 4 \times 40 = 160, TC = 20 + 160 = 180</p> <p></p> (b) To calculate the Total Revenue (TR) at each level of output if price is $30: <p></p> <p>TR = Price \times Output</p> <p>At output 1: TR = 30 \times 1 = 30</p> <p>At output 2: TR = 30 \times 2 = 60</p> <p>At output 3: TR = 30 \times 3 = 90</p> <p>At output 4: TR = 30 \times 4 = 120</p> <p></p> (c) To calculate the profit/loss at each level of output: <p></p> <p>Profit/Loss = TR - TC</p> <p>At output 1: Profit/Loss = 30 - 30 = 0</p> <p>At output 2: Profit/Loss = 60 - 60 = 0</p> <p>At output 3: Profit/Loss = 90 - 110 = -20 (loss)</p> <p>At output 4: Profit/Loss = 120 - 180 = -60 (loss)</p> <p></p> (d) The firm will be in equilibrium at the output level where TR = TC: <p></p> <p>At output 1 and 2 the TR equals TC, so the equilibrium price would be at output levels 1 and 2 if the price should remain at $30.</p> <p></p> (e) With the provided information, it's not possible to determine the time period of the firm's operation, as it requires additional business cycle data or context.
Given: Mass, \( m = 72 \text{ kg} \) Distance to fulcrum, \( b = 12 \text{ cm} = 0.12 \text{ m} \) Fulcrum reaction, \( R = 807.2 \text{ N} \) Gravity, \( g = 9.81 \text{ m/s}^2 \) Total length of lever, \( L = 96 \text{ cm} = 0.96 \text{ m} \) Distance \( a = L - b = 0.96 \text{ m} - 0.12 \text{ m} = 0.84 \text{ m} \) To find the equilibrium force \( F \), we use the principle of moments (torque \( \tau = Fd \)), where \( d \) is the distance from the fulcrum: <p>\( \tau_{\text{clockwise}} = \tau_{\text{counterclockwise}} \)</p> <p>\( F \cdot a = m \cdot g \cdot b \)</p> <p>\( F \cdot 0.84 \text{ m} = 72 \text{ kg} \cdot 9.81 \text{ m/s}^2 \cdot 0.12 \text{ m} \)</p> <p>\( F = \frac{72 \cdot 9.81 \cdot 0.12}{0.84} \)</p> <p>\( F = \frac{847.872}{0.84} \)</p> <p>\( F \approx 1009.61 \text{ N} \)</p> To confirm that the given \( F = 100.9 \text{ N} \) is not correct, and the correct \( F \) is approximately \( 1009.61 \text{ N} \).
<p>Given that the mass \( m = 72 \) kg, the distance from the fulcrum to the mass \( b = 12 \) cm, and the total length of the lever \( L = 96 \) cm, we need to find the force \( F \) to balance the lever and the reaction \( R \) at the fulcrum.</p> <p>To find the force \( F \), we use the principle of moments (torque balance) where the clockwise moments equal the anticlockwise moments about the pivot.</p> <p>The weight of the mass \( W \) acting at a distance \( b \) from the fulcrum is given by:</p> <p>\( W = m \cdot g \)</p> <p>\( W = 72 \cdot 9.8 \) (taking \( g = 9.8 \, \text{m/s}^2 \))</p> <p>\( W = 705.6 \) N</p> <p>The anticlockwise moment due to \( W \) is \( W \cdot b \).</p> <p>Let \( a = L - b \). Then \( a = 96 - 12 = 84 \) cm \( = 0.84 \) m.</p> <p>The clockwise moment due to \( F \) is \( F \cdot a \).</p> <p>Setting the moments equal for balance:</p> <p>\( W \cdot b = F \cdot a \)</p> <p>\( F = \frac{W \cdot b}{a} \)</p> <p>\( F = \frac{705.6 \cdot 0.12}{0.84} \)</p> <p>\( F = 100.8 \) N</p> <p>Now, to find the reaction \( R \) at the fulcrum, we use equilibrium of vertical forces:</p> <p>\( R = W + F \)</p> <p>\( R = 705.6 + 100.8 \)</p> <p>\( R = 806.4 \) N</p> <p>Since \( F \) is 100.8 N which is approximately 100.9 N, and \( R \) is 806.4 N which is approximately 806.7 N.</p>
<p>La ósmosis es el movimiento del agua desde un lugar de _______ concentración de solutos hasta un lugar de _______ concentración de solutos; por tanto, el agua en este ejemplo se movería hacia dentro de la célula hasta que se alcance el equilibrio.</p> <p>La primera palabra que falta es "baja" y la segunda palabra que falta es "alta". Así que, la afirmación completa sería:</p> <p>La ósmosis es el movimiento del agua desde un lugar de baja concentración de solutos hasta un lugar de alta concentración de solutos; por tanto, el agua en este ejemplo se movería hacia dentro de la célula hasta que se alcance el equilibrio.</p>
Email: camtutor.ai@gmail.com