Example Question - distinct real roots

Here are examples of questions we've helped users solve.

Quadratic Function Analysis

The image shows a question with two parts, (i) and (ii), concerning the graph of the function \(y = -3x^2 + 4x + 3\). (i) **Find the intercepts and the coordinates of the turning point on the graph of** \(y = -3x^2 + 4x + 3\). **To find the x-intercepts**, we set \(y\) equal to zero and solve for \(x\): \[0 = -3x^2 + 4x + 3\] This is a quadratic equation, and we can solve it using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = -3\), \(b = 4\), and \(c = 3\). Let's solve for \(x\): \(x = \frac{-4 \pm \sqrt{4^2 - 4(-3)(3)}}{2(-3)}\) \(x = \frac{-4 \pm \sqrt{16 + 36}}{-6}\) \(x = \frac{-4 \pm \sqrt{52}}{-6}\) \(x = \frac{-4 \pm 2\sqrt{13}}{-6}\) Since we cannot simplify the square root any further, we have: \(x_1 = \frac{-4 + 2\sqrt{13}}{-6}\) and \(x_2 = \frac{-4 - 2\sqrt{13}}{-6}\) **To find the y-intercept**, we set \(x\) equal to zero: \(y = -3(0)^2 + 4(0) + 3 = 3\) So the y-intercept is at the point (0, 3). **To find the turning point** (also known as the vertex), we can use the formula for the x-coordinate of the vertex, \(x = -\frac{b}{2a}\), where \(a = -3\) and \(b = 4\): \(x = -\frac{4}{2(-3)}\) \(x = \frac{4}{6}\) \(x = \frac{2}{3}\) Now substitute \(x = \frac{2}{3}\) into the equation to find the y-coordinate: \(y = -3\left(\frac{2}{3}\right)^2 + 4\left(\frac{2}{3}\right) + 3\) \(y = -3\left(\frac{4}{9}\right) + \frac{8}{3} + 3\) \(y = -\frac{4}{3} + \frac{8}{3} + 3\) \(y = \frac{4}{3} + 3\) \(y = \frac{4}{3} + \frac{9}{3}\) \(y = \frac{13}{3}\) So the coordinates of the turning point are \( \left(\frac{2}{3}, \frac{13}{3}\right) \). (ii) **Use the graph to explain why** \(y = -3x^2 + 4x + 3\) **has two distinct real roots.** The question is asking to use the graph as an explanation, but since we cannot see the graph, I will provide a mathematical explanation based on what we have calculated. The quadratic equation \(y = -3x^2 + 4x + 3\) has two distinct real roots because the square root part of the quadratic formula resulted in \(\sqrt{52}\), which is a real number (as all square roots of positive numbers are real). Having two distinct roots means that the discriminant \(b^2 - 4ac\) is positive (\(52\) in our case), and this leads to two different x-intercepts on the graph, which we calculated earlier. In the context of a graph, this means that the parabola crosses the x-axis at two points, corresponding to the two distinct real roots.

CamTutor

In regards to math, we are professionals.

appstoreappstore

Get In Touch

Email: camtutor.ai@gmail.com

Copyright © 2024 - All right reserved